Revised version submitted to The Astrophysical Journal SUCCESSIVE REFINEMENTS IN LONG-TERM INTEGRATIONS OF PLANETARY ORBITS

We report on accurate, long-term numerical simulations of the orbits of the major planets in our solar system. The equations of motion are directly integrated by a Störmer multistep scheme, which is optimized to reduce round-off errors. The physical models are successively refined to include corrections due to general relativity and the finite size of the lunar orbit. In one case, the Earth-Moon system is resolved as two separate bodies, and the results are compared with those based on analytically averaging the lunar orbit. Through this comparison, a better analytical model is obtained. The computed orbits are in good agreement with those of previous studies for the past 5 Myr but not for earlier times. The inner planets exhibit chaotic behavior with a Lyapunov time of exponential separation of nearby orbits equal to about 4 Myr. Modeling uncertainties and chaos in the inner solar system restrict the accuracy of the computations beyond the past 50 Myr. We do not observe marked chaos in the motion of the Jovian planets in our 90 Myr integration, and we infer that the Lyapunov time for those planets is at least 30 Myr.

[1]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[2]  G. Schubert,et al.  Numerical Simulations of the Orbits of the Galilean Satellites , 2002 .

[3]  Dayton L. Jones,et al.  Stellar encounters with the solar system , 2001 .

[4]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[5]  Eli Tziperman,et al.  Sea ice as the glacial cycles' climate switch: Role of seasonal and orbital forcing , 2000 .

[6]  P. W. Sharp Comparisons of high order Stormer and explicit Runge-Kutta Nystrom methods for N-body simulations of the solar system , 2000 .

[7]  J. Laskar,et al.  High order symplectic integrators for perturbed Hamiltonian systems , 2000, astro-ph/0005074.

[8]  Isabella Raffi,et al.  Astronomical calibration age for the Oligocene-Miocene boundary , 2000 .

[9]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System II. The Saturn/Uranus and Uranus/Neptune Zones , 1999 .

[10]  W. M. Kaula,et al.  Dynamical Evolution of Planetesimals in the Outer Solar System: I. The Jupiter/Saturn Zone , 1999 .

[11]  J. Laskar The limits of Earth orbital calculations for geological time-scale use , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  N. Shackleton,et al.  Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences: 357 (1757) , 1999 .

[13]  J. Laskar,et al.  Astronomical calibration of Oligocene--Miocene time , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  M. Holman,et al.  The origin of chaos in the outer solar system , 1999, Science.

[15]  G. Quinlan Resonances and instabilities in symmetric multistep methods , 1999, astro-ph/9901136.

[16]  W. M. Kaula,et al.  Mass-Weighted Symplectic Forms for the N-Body Problem , 1998 .

[17]  F. Varadi Perturbation Theory of Tori Without Complete Fourier Expansion , 1998 .

[18]  M. Ghil,et al.  The Combined Effects of Cold-Nebula Drag and Mean-Motion Resonances , 1998 .

[19]  W. M. Kaula,et al.  Jupiter, Saturn, and the Edge of Chaos , 1997 .

[20]  Masahide Kimoto,et al.  Multiple Attractors and Chaotic Itinerancy in a Quasigeostrophic Model with Realistic Topography: Implications for Weather Regimes and Low-Frequency Variability , 1996 .

[21]  On the secular motion of the jovian planets , 1996 .

[22]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[23]  Chris Stormer,et al.  Explanatory Supplement to the Astronomical Almanac , 1995 .

[24]  Michael Ghil,et al.  Cryothermodynamics: the chaotic dynamics of paleoclimate , 1994 .

[25]  R. Walter,et al.  Intercalibration of astronomical and radioisotopic time , 1994 .

[26]  R. Malhotra A mapping method for the gravitational few-body problem with dissipation , 1994, astro-ph/9407052.

[27]  G. Quinlan Round-off error in long-term orbital integrations using multistep methods , 1994 .

[28]  S. Tremaine,et al.  Long-Term Planetary Integration With Individual Time Steps , 1994, astro-ph/9403057.

[29]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[30]  André Berger,et al.  On the Structure and Origin of Major Glaciation Cycles .2. the 100,000-year Cycle , 1993 .

[31]  The Great Inequality in a Hamiltonian Planetary Theory , 1993, chao-dyn/9311011.

[32]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[33]  Michael Ghil,et al.  Climate evolution in the Pliocene and Pleistocene from marine‐sediment records and simulations: Internal variability versus orbital forcing , 1993 .

[34]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[35]  E. Boyle,et al.  On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing , 1992 .

[36]  Jack Wisdom,et al.  Symplectic Maps for the n-Body Problem: Stability Analysis , 1992 .

[37]  S. Tremaine,et al.  Symplectic integrators for solar system dynamics , 1992 .

[38]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[39]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[40]  S. Tremaine,et al.  Confirmation of resonant structure in the solar system , 1992 .

[41]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[42]  Kunihiko Kaneko,et al.  Globally coupled circle maps , 1991 .

[43]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[44]  Thomas R. Quinn,et al.  A Three Million Year Integration of the Earth's Orbit , 1991 .

[45]  F. Shu Physics of Astrophysics, Vol. II: Gas Dynamics , 1991 .

[46]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[47]  Giacomelli,et al.  Experimental evidence of chaotic itinerancy and spatiotemporal chaos in optics. , 1990, Physical review letters.

[48]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[49]  Otsuka Self-induced phase turbulence and chaotic itinerancy in coupled laser systems. , 1990, Physical review letters.

[50]  Hiroshi Nakai,et al.  Symplectic integrators and their application to dynamical astronomy , 1990 .

[51]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[52]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[53]  S. Childress,et al.  Topics in geophysical fluid dynamics. Atmospheric dynamics, dynamo theory, and climate dynamics. , 1987 .

[54]  Michael Ghil,et al.  Topics in geophysical fluid dynamics , 1987 .

[55]  J. D. Hays,et al.  Milankovitch and Climate: Understanding the Response to Astronomical Forcing , 1984 .

[56]  André Berger,et al.  Milankovitch and Climate , 1984, NATO ASI Series.

[57]  L. Duriez Theorie generale planetaire etendue au cas de la resonance et application au systeme des satellites galileens de Jupiter , 1982 .

[58]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[59]  Michael Ghil,et al.  A climate model with cryodynamics and geodynamics , 1981 .

[60]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[61]  J. W. Humberston Classical mechanics , 1980, Nature.

[62]  J. Imbrie,et al.  Ice Ages: Solving the Mystery , 1980 .

[63]  André Berger,et al.  Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements , 1978, Quaternary Research.

[64]  T. Schopf Paleoceanography. , 2021, Science.

[65]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[66]  Johannes Weertman,et al.  Milankovitch solar radiation variations and ice age ice sheet sizes , 1976, Nature.

[67]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[68]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[69]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[70]  M. Budyko The effect of solar radiation variations on the climate of the Earth , 1969 .

[71]  William D. Sellers,et al.  A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. , 1969 .

[72]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[73]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[74]  Robert Blair Vocci Geology , 1882, Nature.