Phase separation in aqueous solutions of polyethylaminophosphazene hydrochloride during heating

[1]  V. Grinberg,et al.  Energetics of phase separation in aqueous solutions of poly(N-isopropylacrylamide) , 2010 .

[2]  D. Pergushov,et al.  New organoelement polyelectrolytes: Protonated poly(alkylaminophosphazenes) , 2009 .

[3]  Thrimoorthy Potta,et al.  Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. , 2009, Biomaterials.

[4]  Sun‐mi Lee,et al.  Injectable and thermosensitive poly(organophosphazene) hydrogels for a 5‐fluorouracil delivery , 2009 .

[5]  G. Ilia Phosphorus containing hydrogels , 2009 .

[6]  B. Jeong,et al.  Reverse thermogelling biodegradable polymer aqueous solutions , 2009 .

[7]  Ruixue Liu,et al.  Thermoresponsive copolymers: from fundamental studies to applications , 2009 .

[8]  Zeeshan Ahmed,et al.  UV resonance Raman determination of molecular mechanism of poly(N-isopropylacrylamide) volume phase transition. , 2009, The journal of physical chemistry. B.

[9]  T. Burova,et al.  Unwinding of ι-carrageenan double helix upon complex formation with polyethylaminophosphazene hydrochloride , 2009 .

[10]  Soo-Chang Song,et al.  Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  Soo-Chang Song,et al.  Thermosensitive amphiphilic polyphosphazenes and their interaction with ionic surfactants , 2008 .

[12]  Cato T. Laurencin,et al.  In Vitro and In Vivo Characterization of Biodegradable Poly(organophosphazenes) for Biomedical Applications , 2007 .

[13]  Soo-Chang Song,et al.  A thermosensitive poly(organophosphazene) hydrogel for injectable tissue-engineering applications , 2007, Journal of biomaterials science. Polymer edition.

[14]  Gilson Khang,et al.  Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[15]  Jiehyun Seong,et al.  Synthesis and characterization of biocompatible poly(organophosphazenes) aiming for local delivery of protein drugs. , 2006, International journal of pharmaceutics.

[16]  Alexei R. Khokhlov,et al.  Energetics of Cooperative Transitions of N-Vinylcaprolactam Polymers in Aqueous Solutions , 2005 .

[17]  Fumihiko Tanaka,et al.  Cooperative Hydration, Chain Collapse, and Flat LCST Behavior in Aqueous Poly(N-isopropylacrylamide) Solutions , 2005 .

[18]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[19]  Jean-Christophe Leroux,et al.  Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles. , 2004, Biomacromolecules.

[20]  C. van Nostrum,et al.  Water-soluble biodegradable cationic polyphosphazenes for gene delivery. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[21]  C T Laurencin,et al.  Biodegradable polyphosphazenes for drug delivery applications. , 2003, Advanced drug delivery reviews.

[22]  Jeong Byeongmoon,et al.  Lessons from nature: stimuli-responsive polymers and their biomedical applications. , 2002, Trends in biotechnology.

[23]  Y. Sohn,et al.  Solvent effect on the lower critical solution temperature of biodegradable thermosensitive poly(organophosphazenes) , 2000 .

[24]  Jung‐Il Jin,et al.  Surfactant effect on the lower critical solution temperature of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups , 2000 .

[25]  S M Moghimi,et al.  Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. , 2000, Trends in biotechnology.

[26]  Sang Beom Lee,et al.  A New Class of Biodegradable Thermosensitive Polymers. 2. Hydrolytic Properties and Salt Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxypoly(ethylene glycol) and Amino Acid Esters as Side Groups , 1999 .

[27]  Sang Beom Lee,et al.  A New Class of Biodegradable Thermosensitive Polymers. I. Synthesis and Characterization of Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Amino Acid Esters as Side Groups , 1999 .

[28]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[29]  H. Allcock,et al.  Lower Critical Solubility Temperature Study of Alkyl Ether Based Polyphosphazenes , 1996 .

[30]  R. Koningsveld,et al.  Calorimetric analysis of liquid—liquid phase separation , 1994 .

[31]  M. Turner,et al.  Poly(organophosphazenes) with poly(alkyl ether) side groups: a study of their water solubility and the swelling characteristics of their hydrogels , 1992 .

[32]  A. J. Staverman,et al.  Liquid–liquid phase separation in multicomponent polymer solutions. II. The critical state , 1968 .

[33]  A. J. Staverman,et al.  Liquid–liquid phase separation in multicomponent polymer solutions. III. Cloud‐point curves , 1968 .

[34]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[35]  Antonios G Mikos,et al.  Thermoresponsive hydrogels in biomedical applications. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[36]  D. Bruley,et al.  Polyphosphates and other phosphorus-containing polymers for drug delivery applications. , 2003, Critical reviews in therapeutic drug carrier systems.

[37]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[38]  P. Privalov,et al.  Scanning microcalorimetry in studying temperature-induced changes in proteins. , 1986, Methods in enzymology.

[39]  H. Durchschlag Specific Volumes of Biological Macromolecules and Some Other Molecules of Biological Interest , 1986 .

[40]  H. Hinz,et al.  Thermodynamic Data for Biochemistry and Biotechnology , 1986 .