Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage

[1]  Robert Lindenberg,et al.  Neural correlates of unihemispheric and bihemispheric motor cortex stimulation in healthy young adults , 2016, NeuroImage.

[2]  Paolo Maria Rossini,et al.  Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network , 2016, NeuroImage.

[3]  J. Morgan Dendrite remodelling and repair in a retinal explant model of retinal ganglion cell degeneration , 2016 .

[4]  M. Nitsche,et al.  Differential response to anodal tDCS and PAS is indicative of impaired focal LTP-like plasticity in schizophrenia , 2016, Behavioural Brain Research.

[5]  John R Hetling,et al.  Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats. , 2016, Experimental eye research.

[6]  Moritz Dannhauer,et al.  Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial , 2016, PloS one.

[7]  A. Villringer,et al.  Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance , 2016, Clinical Neurophysiology.

[8]  C. Herrmann,et al.  Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation , 2016, Front. Hum. Neurosci..

[9]  Alvaro Pascual-Leone,et al.  Editorial: Non-invasive Brain Stimulation and Plasticity Changes in Aging , 2016, Front. Aging Neurosci..

[10]  Hui Shen,et al.  Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines , 2016, eLife.

[11]  David K. Menon,et al.  Traumatic Axonal Injury: Mechanisms and Translational Opportunities , 2016, Trends in Neurosciences.

[12]  James R. Tribble,et al.  Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma , 2016, Molecular Neurodegeneration.

[13]  Jürgen Kurths,et al.  Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses , 2016, Front. Hum. Neurosci..

[14]  N. Unsain,et al.  New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles , 2015, Neuron.

[15]  B. A. Sabel,et al.  Repetitive Transcorneal Alternating Current Stimulation Reduces Brain Idling State After Long-term Vision Loss , 2015, Brain Stimulation.

[16]  Oliver Speck,et al.  Effects of alternating current stimulation on the healthy and diseased brain , 2015, Front. Neurosci..

[17]  B. Stevens,et al.  Microglia Function in Central Nervous System Development and Plasticity. , 2015, Cold Spring Harbor perspectives in biology.

[18]  Fabrizio Vecchio,et al.  Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke. , 2015, Contemporary Clinical Trials.

[19]  J. Rothwell,et al.  Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation , 2015, Brain Stimulation.

[20]  Bernhard A. Sabel,et al.  Disturbed temporal dynamics of brain synchronization in vision loss , 2015, Cortex.

[21]  B. MacVicar,et al.  The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema , 2015, Cell.

[22]  R. Weinreb,et al.  Differential protection of injured retinal ganglion cell dendrites by brimonidine. , 2015, Investigative ophthalmology & visual science.

[23]  G. Bicker,et al.  Enhanced Neurite Outgrowth of Human Model (NT2) Neurons by Small-Molecule Inhibitors of Rho/ROCK Signaling , 2015, PloS one.

[24]  P. Rossini,et al.  Nanotechnology and Regenerative Medicine Retinal Origin of Electrically Evoked Potentials in Response to Transcorneal Alternating Current Stimulation in the Rat , 2015 .

[25]  Hermann Hinrichs,et al.  Brain functional connectivity network breakdown and restoration in blindness , 2014, Neurology.

[26]  Á. Pascual-Leone,et al.  BDNF Polymorphism and Differential rTMS Effects on Motor Recovery of Stroke Patients , 2014, Brain Stimulation.

[27]  P. Henrich-Noack,et al.  Toxicity of polymeric nanoparticles in vivo and in vitro , 2014, Journal of Nanoparticle Research.

[28]  Wolfgang Rosenstiel,et al.  Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation , 2014, Front. Hum. Neurosci..

[29]  Walter Paulus,et al.  Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases , 2014, NeuroImage.

[30]  R. Weinreb,et al.  Protection by an Oral Disubstituted Hydroxylamine Derivative against Loss of Retinal Ganglion Cell Differentiation following Optic Nerve Crush , 2013, PloS one.

[31]  A. Koleske Molecular mechanisms of dendrite stability , 2013, Nature Reviews Neuroscience.

[32]  R. Weinreb,et al.  Brimonidine protects against loss of Thy-1 promoter activation following optic nerve crush , 2013, BMC Ophthalmology.

[33]  B. Sabel,et al.  “Sightblind”: Perceptual Deficits in the “Intact” Visual Field , 2013, Front. Neurol..

[34]  P. Henrich-Noack,et al.  Transcorneal alternating current stimulation after severe axon damage in rats results in “long-term silent survivor” neurons , 2013, Brain Research Bulletin.

[35]  P. Henrich-Noack,et al.  Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage , 2013, Neuroscience Letters.

[36]  David S. Park,et al.  Conditional Disruption of Calpain in the CNS Alters Dendrite Morphology, Impairs LTP, and Promotes Neuronal Survival following Injury , 2013, The Journal of Neuroscience.

[37]  A. Antal,et al.  Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[38]  P. Henrich-Noack,et al.  Transcorneal alternating current stimulation induces EEG "aftereffects" only in rats with an intact visual system but not after severe optic nerve damage. , 2012, Journal of neurophysiology.

[39]  Takashi Fujikado,et al.  Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. , 2012, Investigative ophthalmology & visual science.

[40]  D. Zack,et al.  Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. , 2012, Investigative ophthalmology & visual science.

[41]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[42]  P. Henrich-Noack,et al.  Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. , 2012, Investigative ophthalmology & visual science.

[43]  Z. Xu,et al.  Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus , 2011, PloS one.

[44]  Robert N Weinreb,et al.  Tracking dendritic shrinkage of retinal ganglion cells after acute elevation of intraocular pressure. , 2011, Investigative ophthalmology & visual science.

[45]  Robert N Weinreb,et al.  Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. , 2011, Investigative ophthalmology & visual science.

[46]  C. Herrmann,et al.  Non-invasive alternating current stimulation improves vision in optic neuropathy. , 2011, Restorative neurology and neuroscience.

[47]  A. Nistri,et al.  Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord , 2010, Neuroscience.

[48]  John P McQuilling,et al.  Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. , 2010, Tissue engineering. Part C, Methods.

[49]  T. Fujikado,et al.  Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats. , 2010, Experimental eye research.

[50]  P. Henrich-Noack,et al.  In vivo confocal neuroimaging (ICON): non‐invasive, functional imaging of the mammalian CNS with cellular resolution , 2010, The European journal of neuroscience.

[51]  M. Freeman,et al.  Neuronal death or dismemberment mediated by Sox14 , 2009, Nature Neuroscience.

[52]  Hai-dong Xu,et al.  Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration , 2009, Experimental Neurology.

[53]  R. Weinreb,et al.  Longitudinal profile of retinal ganglion cell damage assessed with blue-light confocal scanning laser ophthalmoscopy after ischaemic reperfusion injury , 2009, British Journal of Ophthalmology.

[54]  E. Vaucher,et al.  Neuromodulatory role of acetylcholine in visually-induced cortical activation: Behavioral and neuroanatomical correlates , 2008, Neuroscience.

[55]  Robert N. Weinreb,et al.  In vivo imaging of murine retinal ganglion cells , 2008, Journal of Neuroscience Methods.

[56]  S. Thayer,et al.  Excitotoxic loss of post‐synaptic sites is distinct temporally and mechanistically from neuronal death , 2007, Journal of neurochemistry.

[57]  Takashi Fujikado,et al.  Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. , 2007, Investigative ophthalmology & visual science.

[58]  B. A. Sabel,et al.  Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics , 2007, The European journal of neuroscience.

[59]  Y. Hata,et al.  Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. , 2007, Investigative ophthalmology & visual science.

[60]  Dušan Ristanović,et al.  Application of modified Sholl analysis to neuronal dendritic arborization of the cat spinal cord , 2006, Journal of Neuroscience Methods.

[61]  L. Mucke,et al.  A network dysfunction perspective on neurodegenerative diseases , 2006, Nature.

[62]  Y. Jan,et al.  Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning , 2006, Neuron.

[63]  Bin Chen,et al.  Topographic and morphologic analyses of retinal ganglion cell loss in old DBA/2NNia mice. , 2006, Investigative ophthalmology & visual science.

[64]  Takashi Fujikado,et al.  Effect of Transcorneal Electrical Stimulation in Patients with Nonarteritic Ischemic Optic Neuropathy or Traumatic Optic Neuropathy , 2006, Japanese Journal of Ophthalmology.

[65]  K. Krautwald,et al.  Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus , 2005, Neuroscience.

[66]  Y. Fukuda,et al.  Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. , 2005, Investigative ophthalmology & visual science.

[67]  D. Choi,et al.  Ion homeostasis and apoptosis. , 2001, Current opinion in cell biology.

[68]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[69]  B. Sabel,et al.  Restoration of vision IV: role of compensatory soma swelling of surviving retinal ganglion cells in recovery of vision after optic nerve crush. , 2001, Restorative neurology and neuroscience.

[70]  M. Nitsche,et al.  Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation , 2000, The Journal of physiology.

[71]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[72]  P. Bywood,et al.  Dendrite Loss Is a Characteristic Early Indicator of Toxin-Induced Neurodegeneration in Rat Midbrain Slices , 2000, Experimental Neurology.

[73]  B. Sabel,et al.  Restoration of vision III: soma swelling dynamics predicts neuronal death or survival after optic nerve crush in vivo. , 1999, Neuroreport.

[74]  J. Weeks Steroid Hormones, Dendritic Remodeling and Neuronal Death: Insights from Insect Metamorphosis , 1999, Brain, Behavior and Evolution.

[75]  B. Sabel,et al.  Restoration of vision I: neurobiological mechanisms of restoration and plasticity after brain damage - a review. , 1999, Restorative neurology and neuroscience.

[76]  B. Sabel,et al.  In vivo imaging of mammalian central nervous system neurons with the in vivo confocal neuroimaging (ICON) method. , 1999, Methods in enzymology.

[77]  B. Sabel,et al.  In vivo confocal neuroimaging (ICON) of CNS neurons , 1997, Nature Medicine.

[78]  B. Sabel,et al.  MK-801 reduces retinal ganglion cell survival but improves visual performance after controlled optic nerve crush. , 1996, Journal of neurotrauma.

[79]  B. Mackert,et al.  Swelling and death of neuronal cells by lactic acid , 1993, Journal of the Neurological Sciences.

[80]  B. Sabel,et al.  Recovery of Brightness Discrimination in Adult Rats despite Progressive Loss of Retrogradely Labelled Retinal Ganglion Cells after Controlled Optic Nerve Crush , 1993, The European journal of neuroscience.

[81]  Bruce S. McEwen,et al.  Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons , 1992, Brain Research.

[82]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[83]  J. H. Lucas,et al.  Neuronal survival or death after dendrite transection close to the perikaryon: correlation with electrophysiologic, morphologic, and ultrastructural changes. , 1985, Central nervous system trauma : journal of the American Paralysis Association.

[84]  R. S. Sloviter “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies , 1983, Brain Research Bulletin.

[85]  E. Glaser The randomized clinical trial. , 1972, The New England journal of medicine.