High-efficiency photon-number-resolving multichannel detector

A balanced eight-port photon-number-resolving detector is developed. The employed scheme is based on an optical-fiber time-multiplexed device with the unique total optical transmittance reaching 93% and a pair of avalanche photodiodes. The balanced operation is achieved even for imperfect unbalanced fiber splitters used in the time-multiplexed device. The complete characterization of the detector for both classical and singlephoton signals is presented. High-speed photon counting at the rates of 100 kHz with the total detection efficiency exceeding 50% is verified.

[1]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[2]  Alan L Migdall,et al.  High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency. , 2007, Optics express.

[3]  T. Wilk,et al.  Polarization-controlled single photons. , 2006, Physical review letters.

[4]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[5]  A. Penin,et al.  Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study , 2005, quant-ph/0511093.

[6]  Aaron J. Miller,et al.  Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.

[7]  M. Chekhova,et al.  Single-photon detector calibration by means of conditional polarization rotation , 2005 .

[8]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[9]  I. Walmsley,et al.  Characterization of the nonclassical nature of conditionally prepared single photons , 2004, quant-ph/0412184.

[10]  J. Peřina,et al.  Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion , 2004, quant-ph/0405118.

[11]  Christine Silberhorn,et al.  Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. , 2004, Physical review letters.

[12]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[13]  E. Diamanti,et al.  Generation of photon number states , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[14]  E. Diamanti,et al.  High-efficiency photon-number detection for quantum information processing , 2003, quant-ph/0308054.

[15]  M. J. Fitch,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[16]  I. Walmsley,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[17]  J. Peřina,et al.  Multiple-photon resolving fiber-loop detector , 2003, quant-ph/0303032.

[18]  O. Haderka,et al.  Experimental multi-photon-resolving detector using a single avalanche photodiode , 2003, quant-ph/0302154.

[19]  I. Walmsley,et al.  Photon counting with a loop detector. , 2002, Optics letters.

[20]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[21]  D. James,et al.  Atomic-vapor-based high efficiency optical detectors with photon number resolution. , 2002, Physical Review Letters.

[22]  A. Imamoğlu High efficiency photon counting using stored light. , 2002, Physical review letters.

[23]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[24]  G. Rempe,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[25]  M. J. Fitch,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[26]  N. Gisin,et al.  Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses , 2001, quant-ph/0102062.

[27]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical review letters.

[28]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[29]  P. Kok,et al.  Detection devices in entanglement-based optical state preparation , 1999, quant-ph/9910084.

[30]  M. Dušek,et al.  Unambiguous state discrimination in quantum cryptography with weak coherent states , 1999, quant-ph/9910106.

[31]  Shigeki Takeuchi,et al.  Development of a high-quantum-efficiency single-photon counting system , 1999 .

[32]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[33]  Dmitri Mogilevtsev,et al.  Diagonal element inference by direct detection , 1998 .

[34]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[35]  Paul,et al.  Photon chopping: New way to measure the quantum state of light. , 1996, Physical review letters.

[36]  P. Kwiat,et al.  Absolute efficiency and time-response measurement of single-photon detectors. , 1994, Applied optics.

[37]  Steinberg,et al.  High-efficiency single-photon detectors. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[38]  Song,et al.  Generation of superpositions of classically distinguishable quantum states from optical back-action evasion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[40]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[41]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .