MODULATION IDENTIFICATION USING NEURAL NETWORKS FOR COGNITIVE RADIOS

This paper presents a signal modulation classifier d sign using artificial neural networks. We analyze system -l vel issues including carrier synchronization, bandwidth estimation, and modulation classification. This is an extension of previous work with the addition of sta nd rdfree signal classification as well as an in-depth a nalysis of the feature space used in the neural network. The r esults show promising classification statistics with over 80% success rates in the presence of noise even with hi gher-order digital modulations.

[1]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[2]  L. Franks,et al.  Carrier and Bit Synchronization in Data Communication - A Tutorial Review , 1980, IEEE Transactions on Communications.

[3]  Samir S. Soliman,et al.  Automatic modulation classification using zeroç crossing , 1990 .

[4]  B. Mobasseri,et al.  Constellation shape as a robust signature for digital modulation recognition , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[5]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Visa Koivunen,et al.  Classification of MFSK modulated signals using the mean of complex envelope , 2000, 2000 10th European Signal Processing Conference.

[7]  R.H. Morelos-Zaragoza,et al.  A method of non-data-aided carrier recovery with modulation identification , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[8]  William A. Gardner,et al.  Statistical spectral analysis : a nonprobabilistic theory , 1986 .

[9]  A. K. Nandi,et al.  Procedure for automatic recognition of analogue and digital modulations , 1996 .

[10]  John G. Proakis,et al.  Digital Communications , 1983 .

[11]  Ii Leon W. Couch Digital and analog communication systems , 1983 .

[12]  S. L. Marple,et al.  A tutorial overview of modern spectral estimation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.