Inverse problems in biomedical imaging: modeling and methods of solution

Imaging techniques are a powerful tool for the analysis of human organs and biological systems and they range from different kinds of tomography to different kinds of microscopy. Their common feature is that they require mathematical modeling of the acquisition process and numerical methods for the solution of the equations relating the data to the unknown object. These problems are usually named inverse problems and their main feature is that they are ill-posed in the sense of Hadamard, so that their solutions require special care. In this chapter we sketch the main issues which must be considered when treating inverse problems of interest in biomedical imaging.

[1]  S.Y. Semenov,et al.  Microwave tomography: two-dimensional system for biological imaging , 1996, IEEE Transactions on Biomedical Engineering.

[2]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[3]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[4]  X. Li,et al.  Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[5]  Mario Bertero,et al.  Tomography with a finite set of projections: singular value decomposition and resolution , 1997 .

[6]  C. Pichot,et al.  Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics , 1988 .

[7]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[8]  Michele Piana,et al.  FIST: A fast visualizer for fixed-frequency acoustic and electromagnetic inverse scattering problems , 2006, Simul. Model. Pract. Theory.

[9]  Robert H. Svenson,et al.  Three-dimensional microwave tomography. Theory and computer experiments in scalar approximation , 2000 .

[10]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[11]  A. S. Fokas,et al.  The unique determination of neuronal currents in the brain via magnetoencephalography , 2004 .

[12]  A. Diaspro Confocal and two-photon microscopy : foundations, applications, and advances , 2001 .

[13]  S. Arridge Optical tomography in medical imaging , 1999 .

[14]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[15]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .

[16]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[17]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[18]  Mario Bertero,et al.  Computation of the response function in chirp-pulse microwave computerized tomography , 2001 .

[19]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[20]  S. Webb The Physics of Medical Imaging , 1990 .

[21]  Laguerre and computerized tomography: Consistency conditions and stability of the radon transform , 1985 .

[22]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[23]  V. Isakov Appendix -- Function Spaces , 2017 .

[24]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[25]  M. Miyakawa,et al.  Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography , 1993, Medical & Biological Engineering & Computing.

[26]  David Isaacson,et al.  Comment on A.-P. Calderón’s paper: “On an inverse boundary value problem” [in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980; MR0590275 (81k:35160)] , 1989 .

[27]  A. C. Riddle,et al.  Inversion of Fan-Beam Scans in Radio Astronomy , 1967 .

[28]  Sudhakar Prasad,et al.  Statistical-information-based performance criteria for Richardson-Lucy image deblurring. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Kenneth R. Castleman,et al.  Reconstructing 3-D Specimens From 2-D Section Images , 1971, Other Conferences.

[30]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[31]  Richard Courant,et al.  Methods of Mathematical Physics II: Partial Di erential Equations , 1963 .

[32]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[33]  Y. You,et al.  A fast method for acoustic imaging of multiple three-dimensional objects. , 2000, The Journal of the Acoustical Society of America.

[34]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[35]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[36]  Peter Monk,et al.  A Linear Sampling Method for the Detection of Leukemia Using Microwaves , 1998, SIAM J. Appl. Math..

[37]  C. Pichot,et al.  Inverse scattering: an iterative numerical method for electromagnetic imaging , 1991 .

[38]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[39]  M. E. Davison A singular value decomposition for the radon transform in n-dimensional euclidean space , 1981 .

[40]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[41]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[42]  Michio Miyakawa,et al.  Non-Invasive Thermometry of the Human Body , 1995 .

[43]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[44]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[45]  A. Formiconi,et al.  A simple model for the efficient correction of collimator blur in 3D SPECT imaging , 1999 .

[46]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[47]  Fioralba Cakoni,et al.  On the Mathematical Basis of the Linear Sampling Method , 2003 .

[48]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[49]  E. Somersalo,et al.  Non-stationary magnetoencephalography by Bayesian filtering of dipole models , 2003 .

[50]  Martin Schweiger,et al.  Electrical Impedance and Diffuse Optical Tomography Reconstruction Software , 1999 .

[51]  E. Reynolds,et al.  Introduction to a Discussion on Near-infrared spectroscopy and imaging of living systems. , 1997 .

[52]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[53]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[54]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[55]  Mario Bertero,et al.  Inverse scattering problems in optics , 1980 .

[56]  Richard A. Albanese,et al.  Mathematics, medicine and microwaves , 1994 .

[57]  L. A. Cram,et al.  Inverse methods in electromagnetic imaging , 1985 .

[58]  J. Goodman Introduction to Fourier optics , 1969 .

[59]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[60]  Claude Brezinski,et al.  Polynômes orthogonaux et applications , 1985 .

[61]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[62]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[63]  A. Lent,et al.  An introduction to NMR imaging: From the Bloch equation to the imaging equation , 1983, Proceedings of the IEEE.

[64]  Mario Bertero,et al.  Image restoration in chirp-pulse microwave CT (CP-MCT) , 2000, IEEE Transactions on Biomedical Engineering.

[65]  David Isaacson,et al.  Comment on Calderon's Paper: "On an Inverse Boundary Value Problem" , 1989 .

[66]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[67]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[68]  Tosio Kato Perturbation theory for linear operators , 1966 .

[69]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[70]  Mario Bertero,et al.  The Stability of Inverse Problems , 1980 .

[71]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[72]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[73]  Fenguangzhai Song CD , 1992 .

[74]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[75]  Mario Bertero,et al.  Experimental validation of a linear model for data reduction in chirp-pulse microwave CT , 2002, IEEE Transactions on Medical Imaging.