NK Simulation Modeling

This chapter discusses NK simulation modelling, which have been launched and developed primarily by Kauffman from the end of sixties, as a candidate for capturing networks dynamics. Grounded in reference to biological networks, it has aroused a grate and durable interest in economics and management sciences too. This methodology is split into a version focused on studying Boolean networks dynamics, whose trajectories are substantially conditioned by Boolean functions, and a version focused on systems co-evolutionary paths, driven by the search for optimizing its fitness value. Besides the unquestionable value of Kauffman’s work for the theoretical implications on evolutionary biology, in this chapter failures and limitations of both NK modelling versions are discussed. In particular, it is shown that, as applications try to be more realistic, this modelling becomes hardly treatable from a computational point of view. On the other hand, especially the fitness landscape version is very useful to show general aspects of system’s dynamics, and the impossibility to find general optima (excepted for very special and unrealistic cases).

[1]  E. Jantsch The self-organizing universe : scientific and human implications of the emerging paradigm of evolution , 1980 .

[2]  Thierry Marchant,et al.  Evaluation and Decision Models: A Critical Perspective , 2000 .

[3]  Michael A. Savageau,et al.  Effects of alternative connectivity on behavior of randomly constructed Boolean networks , 2002 .

[4]  H. Leavitt Some effects of certain communication patterns on group performance. , 1951, Journal of abnormal psychology.

[5]  Lucio Biggiero,et al.  Choosing and Evaluating Technology Policy: A Multicriteria Approach , 2003 .

[6]  Daniel A. Levinthal,et al.  Looking Forward and Looking Backward: Cognitive and Experiential Search , 2000 .

[7]  Luigi Marengo,et al.  Decomposability and modularity of economic interactions , 2001 .

[8]  R. Słowiński,et al.  Aiding decisions with multiple criteria: essays in honor of Bernard Roy , 2002 .

[9]  William Ross Ashby,et al.  On temporal characteristics of behavior in certain complex systems , 1966, Kybernetik.

[10]  S. Guastello Self-Organization in Leadership Emergence , 1998 .

[11]  Giustina Secundo,et al.  Dynamic Learning Networks: Models and Cases in Action , 2009 .

[12]  M. Mitchell Waldrop,et al.  Complexity : the emerging science and the edge of order and chaos , 1992 .

[13]  Brian Wilson,et al.  Systems: Concepts, Methodologies, and Applications , 1990 .

[14]  Mie Augier,et al.  Models of a Man: Essays in Memory of Herbert A. Simon , 2004 .

[15]  O. Sorenson,et al.  Technology as a complex adaptive system: evidence from patent data , 2001 .

[16]  L. Biggiero,et al.  On choosing governance structures , 2007 .

[17]  Marguerite Schneider,et al.  Organizations as complex adaptive systems: Implications of Complexity Theory for leadership research , 2006 .

[18]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[19]  Lucio Biggiero,et al.  THE DYNAMICS OF KNOWLEDGE TRANSFER IN INDUSTRIAL CLUSTERS AN APPLICATION OF BOOLEAN NETWORK MODELING , 2012 .

[20]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[21]  Jan W. Rivkin,et al.  Speed and Search: Designing Organizations for Turbulence and Complexity , 2005, Organ. Sci..

[22]  J. Todd,et al.  INVESTIGATIONS , 1984, The Lancet.

[23]  Bartolo Luque,et al.  Random walk networks , 2004 .

[24]  Roberto Serra,et al.  On the dynamics of random Boolean networks with scale-free outgoing connections , 2004 .

[25]  Swetlana Nikolajewa,et al.  Boolean networks with biologically relevant rules show ordered behavior , 2007, Biosyst..

[26]  Stuart A. Kauffman,et al.  Cellular Homeostasis, Epigenesis and Replication in Randomly Aggregated Macromolecular Systems , 1971 .

[27]  L. Biggiero Practice vs. Possession: Epistemological Implications on the Nature of Organizational Knowledge and Cognition , 2012 .

[28]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[29]  Martin G. Everett,et al.  Analyzing social networks , 2013 .

[30]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[31]  Alexei Kurakin,et al.  Scale-free Flow of Life: On the Biology, Economics, and Physics of the Cell , 2009 .

[32]  S. Kauffman At Home in the Universe: The Search for the Laws of Self-Organization and Complexity , 1995 .

[33]  S. Kauffman Emergent properties in random complex automata , 1984 .

[34]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[35]  Alex Bavelas A Mathematical Model for Group Structures , 1948 .

[36]  Stuart A. Kauffman,et al.  Technological evolution and adaptive organizations: Ideas from biology may find applications in economics , 1995, Complex..

[37]  H. Foerster,et al.  Principles of Self-Organization — In a Socio-Managerial Context , 1984 .

[38]  Kathleen M. Carley The value of cognitive foundations for dynamic social theory , 1989 .

[39]  Mauro Birattari,et al.  Dynamical regimes and learning properties of evolved Boolean networks , 2013, Neurocomputing.

[40]  G. Cattani Technological Pre-Adaptation, Speciation, and Emergence of New Technologies: How Corning Invented and Developed Fiber Optics , 2006 .

[41]  Jan W. Rivkin Imitation of Complex Strategies , 2000 .

[42]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[43]  Andrew Wuensche,et al.  Discrete Dynamical Networks and Their Attractor Basins , 1998 .

[44]  Sylvie Geisendorf The economic concept of evolution: self-organization or Universal Darwinism? , 2009 .

[45]  Albert-László Barabási,et al.  Linked - how everything is connected to everything else and what it means for business, science, and everyday life , 2003 .

[46]  Koen Frenken,et al.  Interdependencies, Nearly-Decomposability and Adaptation , 1999 .

[47]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[48]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[49]  Lucio Biggiero,et al.  Sources of Complexity in Human Systems , 2012 .

[50]  Steve J. Heims,et al.  The Cybernetics Group , 1991 .

[51]  E. D. Paolo,et al.  Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks , 2001 .

[52]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[53]  Richard M. Burton,et al.  Organizations and Complexity: Searching for the Edge of Chaos , 2000, Comput. Math. Organ. Theory.

[54]  Jordan B. Pollack,et al.  Modular Interdependency in Complex Dynamical Systems , 2005, Artificial Life.

[55]  Eric Ashby Thinking about complexity , 1977, Nature.

[56]  Kazumoto Iguchi,et al.  Rugged fitness landscapes of Kauffman models with a scale-free network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Jürgen Klüver,et al.  Recent Results on Ordering Parameters in Boolean Networks , 2007, Complex Syst..

[58]  Philip E. Auerswald,et al.  The Production Recipes Approach to Modeling Technological Innovation: An Application to Learning by Doing , 1998 .

[59]  Lucio Biggiero,et al.  The COD Model: Simulating Workgroup Performance , 2008 .

[60]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[61]  Steven N. Durlauf,et al.  The Economy As an Evolving Complex System III: Current Perspectives and Future Directions , 2005 .

[62]  H. Simon Method and Appraisal in Economics: From substantive to procedural rationality , 1976 .

[63]  David Colander,et al.  The Economy as an Evolving Complex System III: Current Perspectives and Future Directions. Edited by LAWRENCE E. BLUME and STEVEN N. DURLAUF , 2007 .

[64]  U. Witt Self-organization and economics—what is new? , 1997 .

[65]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[66]  Giustina Secundo,et al.  Dynamic Learning Networks , 2009 .

[67]  M. Leone,et al.  The computational core and fixed point organization in Boolean networks , 2005, cond-mat/0512089.

[68]  Bartolo Luque,et al.  Variances as order parameter and complexity measure for random Boolean networks , 2005 .

[69]  Carlos Gershenson,et al.  Phase Transitions in Random Boolean Networks with Different Updating Schemes , 2003, ArXiv.

[70]  Alex Bavelas,et al.  Communication Patterns in Task‐Oriented Groups , 1950 .

[71]  Carlos Gershenson,et al.  Updating Schemes in Random Boolean Networks: Do They Really Matter? , 2004, ArXiv.

[72]  Sui Huang,et al.  Complex Gene Regulatory Networks - from Structure to Biological Observables: Cell Fate Determination , 2009, Encyclopedia of Complexity and Systems Science.

[73]  W. Buckley Sociology and modern systems theory , 1967 .

[74]  W. Sulis,et al.  Nonlinear dynamics in the life and social science , 2001 .

[75]  S. Kauffman,et al.  Adaptive automata based on Darwinian selection , 1986 .

[76]  Jürgen Klüver The dynamics and evolution of social systems , 2000 .

[77]  Dale A. Stirling,et al.  Information rules , 2003, SGMD.

[78]  K. Frenken A fitness landscape approach to technological complexity, modularity, and vertical disintegration , 2006 .

[79]  S. Seshu,et al.  Introduction to the theory of finite-state machines , 1963 .

[80]  Raymond A. Eve,et al.  Chaos, complexity, and sociology : myths, models, and theories , 1998 .

[81]  Gianfranco Minati,et al.  Systemics of Emergence: Research and Development , 2006 .

[82]  John Foster,et al.  Frontiers of Evolutionary Economics: Competition, Self-Organization and Innovation Policy , 2001 .

[83]  Z. Somogyvári,et al.  Length of state cycles of random Boolean networks: an analytic study , 2000 .

[84]  S. Kauffman,et al.  Antichaos and adaptation. , 1991, Scientific American.

[85]  J Ashford,et al.  Paradigms Lost , 1999, Science.

[86]  Ilya Shmulevich,et al.  Boolean Modeling of Biological Networks , 2009, Encyclopedia of Complexity and Systems Science.

[87]  F. Westhoff,et al.  Complexity, organization, and Stuart Kauffman's The Origins of Order , 1996 .

[88]  Ted G. Lewis,et al.  Network Science: Theory and Practice , 2009 .

[89]  Cynthia M. Lakon,et al.  How Correlated Are Network Centrality Measures? , 2008, Connections.

[90]  L. Biggiero Organizations as Cognitive Systems is Knowledge an Emergent Property of Information Networks , 2008 .

[91]  John Scott Social Network Analysis , 1988 .

[92]  Edward R. Dougherty,et al.  From Boolean to probabilistic Boolean networks as models of genetic regulatory networks , 2002, Proc. IEEE.

[93]  Diederik Aerts,et al.  Contextual Random Boolean Networks , 2003, ECAL.

[94]  Kathleen M. Carley An approach for relating social structure to cognitive structure , 1986 .

[95]  R. Hanneman Introduction to Social Network Methods , 2001 .

[96]  Robert Trappl Cybernetics: Theory and Applications , 1983 .

[97]  Stephanie Boehm,et al.  Chaos Making A New Science , 2016 .

[98]  M. Crommelinck,et al.  Self-organization and emergence in life sciences , 2006 .

[99]  John Foster,et al.  Frontiers of Evolutionary Economics: Competition, Self-Organization and Innovation Policy , 2001 .

[100]  John Scott,et al.  The SAGE Handbook of Social Network Analysis , 2011 .

[101]  M. E. Shaw Some effects of unequal distribution of information upon group performance in various communication nets. , 1954, Journal of abnormal psychology.

[102]  Andrew Wuensche,et al.  A model of transcriptional regulatory networks based on biases in the observed regulation rules , 2002, Complex..

[103]  B. McKelvey Toward a 0th Law of Thermodynamics: Order-Creation Complexity Dynamics from Physics and Biology to Bioeconomics , 2004 .

[104]  Jan W. Rivkin Reproducing Knowledge: Replication Without Imitation at Moderate Complexity , 2001 .

[105]  Klaus Sutner,et al.  Classification of Cellular Automata , 2009 .

[106]  Stuart A. Kauffman,et al.  Evolution of Organizational Performance and Stability in a Stochastic Environment , 2002, Comput. Math. Organ. Theory.

[107]  Daniel A. Levinthal Adaptation on rugged landscapes , 1997 .

[108]  S. Kauffman,et al.  Genetic networks with canalyzing Boolean rules are always stable. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Xutao Deng,et al.  Dynamics of asynchronous random Boolean networks with asynchrony generated by stochastic processes , 2007, Biosyst..

[110]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[111]  Peter R. Monge,et al.  Theories of Communication Networks , 2003 .

[112]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[113]  James D. Thompson Organizations in Action , 1967 .

[114]  P. Kline Models of man , 1986, Nature.

[115]  W. Ross Ashby,et al.  Principles of the Self-Organizing System , 1991 .

[116]  S. Brahmachari,et al.  Boolean network analysis of a neurotransmitter signaling pathway. , 2007, Journal of theoretical biology.

[117]  H. Meserve Understanding understanding , 2005, Journal of Religion and Health.

[118]  Nihat Ay,et al.  Robustness, canalyzing functions and systems design , 2012, Theory in Biosciences.

[119]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[120]  C. Prell Social Network Analysis: History, Theory and Methodology , 2011 .

[121]  P. Allen Cities and Regions as Self-Organizing Systems: Models of Complexity , 1997 .

[122]  S. Gould The Structure of Evolutionary Theory , 2002 .

[123]  Franziska Abend,et al.  Sync The Emerging Science Of Spontaneous Order , 2016 .

[124]  W. Brian Arthur,et al.  Complexity, the Santa Fe approach, and non-equilibrium economics , 2010 .

[125]  Daniel A. Levinthal,et al.  Temporarily Divide to Conquer: Centralized, Decentralized, and Reintegrated Organizational Approaches to Exploration and Adaptation , 2003, Organ. Sci..

[126]  S. Kauffman Gene regulation networks: a theory for their global structure and behaviors. , 1971, Current topics in developmental biology.

[127]  M. Mazumdar,et al.  Avoiding Complexity Catastrophe in Coevolutionary Pockets: Strategies for Rugged Landscapes , 1999 .

[128]  Kathleen M. Carley,et al.  The nature of the social agent , 1994 .

[129]  Jan W. Rivkin,et al.  Balancing Search and Stability: Interdependencies Among Elements of Organizational Design , 2003, Manag. Sci..

[130]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[131]  M. Aldana Boolean dynamics of networks with scale-free topology , 2003 .

[132]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[133]  Lucio Biggiero,et al.  On Choosing Governance Structures Theoretical and Methodological Issues , 2007 .

[134]  A. Amin,et al.  Architectures of Knowledge: Firms, Capabilities, and Communities , 2004 .

[135]  Luigi Marengo,et al.  Industry dynamics in complex product spaces: An evolutionary model , 2010 .

[136]  S. Kauffman,et al.  Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. , 1991, Journal of theoretical biology.

[137]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[138]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[139]  Ali E. Akgün,et al.  Complex adaptive systems theory and firm product innovativeness , 2014 .

[140]  Leon Hirsch,et al.  Cellular Automata A Discrete Universe , 2016 .

[141]  Lucio Biggiero,et al.  Comparing and Choosing Organizational Structures: A Multicriteria Methodology , 2012 .

[142]  James E. Hanson,et al.  Emergent Phenomena in Cellular Automata , 2009 .

[143]  George J. Klir,et al.  Facets of Systems Science , 1991 .

[144]  Stuart A. Kauffman,et al.  Optimal search on a technology landscape , 2000 .

[145]  S. Kauffman,et al.  Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. , 2009, Seminars in cell & developmental biology.

[146]  David Lane,et al.  Complexity perspectives in innovation and social change , 2009 .

[147]  Daniel A. Levinthal,et al.  Modularity and Innovation in Complex Systems , 2002, Manag. Sci..

[148]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[149]  S. Strogatz Exploring complex networks , 2001, Nature.

[150]  Stefano Patarnello,et al.  Learning Networks of Neurons with Boolean Logic , 1987 .

[151]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[152]  Sanjay Jain,et al.  The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response , 2007 .

[153]  Carlos Gershenson,et al.  Classification of Random Boolean Networks , 2002, ArXiv.

[154]  Kristina Georgieva,et al.  Understanding the Dynamics of Industrial Networks Using Kauffman Boolean Networks , 2008, Adv. Complex Syst..

[155]  Daniel J. Lacks,et al.  Dynamics of Team Member Replacements from Complex Systems Theory , 2005, Comput. Math. Organ. Theory.

[156]  S. Kauffman,et al.  Phase Transitions in Random Networks with Multiple States , 1999, adap-org/9907011.

[157]  Carlos Gershenson,et al.  Introduction to Random Boolean Networks , 2004, ArXiv.

[158]  Kenneth L. Artis Design for a Brain , 1961 .

[159]  Daniel A. Levinthal,et al.  Landscape Design: Designing for Local Action in Complex Worlds , 1999 .

[160]  H. Foerster Understanding Understanding , 2002, Springer New York.

[161]  C. Zimmer 100 trillion connections. , 2011, Scientific American.

[162]  Bill McKelvey,et al.  Situated learning theory: adding rate and complexity effects via Kauffman's NK model. , 2004, Nonlinear dynamics, psychology, and life sciences.

[163]  Jan W. Rivkin,et al.  Organizational sticking points on NK Landscapes , 2002, Complex..

[164]  H. Simon Rational Decision Making in Business Organizations , 1978 .

[165]  Roberto Serra,et al.  Recent Results on Random Boolean Networks , 2006 .

[166]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[167]  Eva Jablonka,et al.  Evolution, order, and complexity , 1997 .