Functional observer for switched discrete-time singular systems with time delays and unknown inputs

This study considers the functional observers design for a class of discrete-time switched singular systems simultaneously subject to state delays, unknown inputs (UIs) and arbitrary switching sequences. The singular matrix E is assumed to be switching-mode-dependent, and the UIs are present in both the state and the measurement channels. A mode-dependent, delay-type observer is first constructed, then, based on the unknown input decoupling and the switched Lyapunov theory, a method is proposed to design such observer which ensures both: the total elimination of the UIs and exponential estimate of the given function of the state vector. The conditions for the existence of the proposed observer are given through algebraic matrix inequalities, and exponential stability of the observation error dynamics is derived by using a properly constructed decay-rate-dependent switched Lyapunov function and the linear matrix inequality technique. Finally, an illustrative example is given to show the effectiveness of the obtained results.

[1]  Existence conditions for unknown input functional observers , 2013, Int. J. Control.

[2]  Yi Shen,et al.  Actuator fault estimation observer design for discrete‐time linear parameter‐varying descriptor systems , 2015 .

[3]  Shengyuan Xu,et al.  Finite-time functional observers for descriptor systems , 2009 .

[4]  Mohamed Darouach Linear functional observers for systems with delays in State variables: the discrete-time case , 2005, IEEE Transactions on Automatic Control.

[5]  Huaicheng Yan,et al.  Robust $H_{\infty}$ Filtering for Switched Stochastic System With Missing Measurements , 2009, IEEE Transactions on Signal Processing.

[6]  Hyungbo Shim,et al.  Observability for Switched Linear Systems: Characterization and Observer Design , 2013, IEEE Transactions on Automatic Control.

[7]  Mohamed Darouach Existence and design of functional observers for linear systems , 2000, IEEE Trans. Autom. Control..

[8]  S. Żak,et al.  State observation of nonlinear uncertain dynamical systems , 1987 .

[9]  Damien Koenig,et al.  Observer design for unknown input nonlinear descriptor systems via convex optimization , 2006, IEEE Transactions on Automatic Control.

[10]  Damien Koenig,et al.  Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation , 2005, IEEE Transactions on Automatic Control.

[11]  P. Kudva,et al.  Observers for linear systems with unknown inputs , 1980 .

[12]  H. Karimi Robust H 1 Filter Design for Uncertain Linear Systems Over Network with Network-Induced Delays and Output Quantization , 2009 .

[13]  Mihai Lungu,et al.  Full-order observer design for linear systems with unknown inputs , 2012, Int. J. Control.

[14]  Hamid Reza Karimi,et al.  Robust Observer Design for Unknown Inputs Takagi–Sugeno Models , 2013, IEEE Transactions on Fuzzy Systems.

[15]  Gilles Millerioux,et al.  Dead-Beat Functional Observers for Discrete-Time LPV Systems With Unknown Inputs , 2013, IEEE Transactions on Automatic Control.

[16]  Mohamed Darouach,et al.  Functional observers for linear descriptor systems , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[17]  P. Balasubramaniam,et al.  A descriptor system approach to the delay-dependent exponential stability analysis for switched neutral systems with nonlinear perturbations , 2015 .

[18]  Hamid Reza Karimi,et al.  New Delay-Dependent Exponential $H_{\infty}$ Synchronization for Uncertain Neural Networks With Mixed Time Delays , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Mohamed Darouach,et al.  Unknown inputs functional observers designs for delay descriptor systems , 2013, Int. J. Control.

[20]  Hao Liu,et al.  Multiple-Mode Observer Design for a Class of Switched Linear Systems , 2015, IEEE Transactions on Automation Science and Engineering.

[21]  Shouwei Zhao,et al.  Brief paper: geometric approach for observability and accessibility of discrete-time non-linear switched impulsive systems , 2013 .

[22]  Peng Shi,et al.  Robust Fault Detection for Switched Linear Systems With State Delays , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  B. Marx,et al.  Design of observers for TakagiߝSugeno descriptor systems with unknown inputs and application to fault diagnosis , 2007 .

[24]  S. Bhattacharyya Observer design for linear systems with unknown inputs , 1978 .

[25]  Zhisheng Duan,et al.  Brief Paper - Unknown input observer design for systems with monotone non-linearities , 2012 .

[26]  Wen-an Zhang,et al.  Stability analysis for discrete-time switched time-delay systems , 2009, Autom..

[27]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[28]  L. Vandenberghe,et al.  Extended LMI characterizations for stability and performance of linear systems , 2009, Syst. Control. Lett..

[29]  Hamid Reza Karimi,et al.  Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks , 2009 .

[30]  M. Darouach,et al.  Reduced-order observer design for descriptor systems with unknown inputs , 1996, IEEE Trans. Autom. Control..

[31]  Damien Koenig,et al.  Unknown Input Observers for Switched Nonlinear Discrete Time Descriptor Systems , 2008, IEEE Transactions on Automatic Control.

[32]  Alessandro Pisano,et al.  Finite-time converging jump observer for switched linear systems with unknown inputs ☆ , 2011 .

[33]  Michael Defoort,et al.  Hybrid sliding mode observer for switched linear systems with unknown inputs , 2014, J. Frankl. Inst..

[34]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[35]  Alessandro Pisano,et al.  Switched Observers for Switched Linear Systems With Unknown Inputs , 2011, IEEE Transactions on Automatic Control.

[36]  Ilse Cervantes,et al.  Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis , 2013, Sensors.