Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model

It is natural to assume that a missing-data mechanism depends on latent variables in the analysis of incomplete data in latent variate modeling because latent variables are error-free and represent key notions investigated by applied researchers. Unfortunately, the missing-data mechanism is then not missing at random (NMAR). In this article, a new estimation method is proposed, which leads to consistent and asymptotically normal estimators for all parameters in a linear latent variate model, where the missing mechanism depends on the latent variables and no concrete functional form for the missing-data mechanism is used in estimation. The method to be proposed is a type of multi-sample analysis with or without mean structures, and hence, it is easy to implement. Complete-case analysis is shown to produce consistent estimators for some important parameters in the model.

[1]  G. A. Marcoulides,et al.  Advanced structural equation modeling : issues and techniques , 1996 .

[2]  W. M. Patefield Multivariate Linear Relationships: Maximum Likelihood Estimation and Regression Bounds , 1981 .

[3]  J. Baumert,et al.  Longitudinal and multi-group modeling with missing data , 2022 .

[4]  Karl G. Jöreskog,et al.  Lisrel 8: Structural Equation Modeling With the Simplis Command Language , 1993 .

[5]  K. Liang,et al.  Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach , 2000 .

[6]  R. P. McDonald,et al.  Structural Equations with Latent Variables , 1989 .

[7]  Y. Kano,et al.  Identifiability of full, marginal, and conditional factor analysis models , 1995 .

[8]  J. Graham Adding Missing-Data-Relevant Variables to FIML-Based Structural Equation Models , 2003 .

[9]  G. Arminger,et al.  Specification and Estimation of Mean- and Covariance-Structure Models , 1995 .

[10]  Colm O'Muircheartaigh,et al.  Symmetric pattern models: a latent variable approach to item non‐response in attitude scales , 1999 .

[11]  Joseph G. Ibrahim,et al.  Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable , 1999 .

[12]  A. Shapiro,et al.  Robustness of normal theory methods in the analysis of linear latent variate models. , 1988 .

[13]  J J McArdle,et al.  Structural Factor Analysis Experiments with Incomplete Data. , 1994, Multivariate behavioral research.

[14]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[15]  William Meredith,et al.  Notes on factorial invariance , 1964 .

[16]  Jürgen Baumert,et al.  Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples. , 2000 .

[17]  S. Albert Paul,et al.  Shared-parameter models , 2008 .

[18]  John W Graham,et al.  Planned missing data designs in psychological research. , 2006, Psychological methods.

[19]  D. Altman,et al.  Missing data , 2007, BMJ : British Medical Journal.

[20]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[21]  Michael E. Sobel,et al.  Pseudo-Maximum Likelihood Estimation of Mean and Covariance Structures with Missing Data , 1990 .

[22]  P. Bentler,et al.  A Two-Stage Approach to Missing Data: Theory and Application to Auxiliary Variables , 2009 .

[23]  Ke-Hai Yuan,et al.  Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis , 2009, J. Multivar. Anal..

[24]  J. Schafer,et al.  A comparison of inclusive and restrictive strategies in modern missing data procedures. , 2001, Psychological methods.

[25]  Ke-Hai Yuan,et al.  Asymptotics of Estimating Equations under Natural Conditions , 1998 .

[26]  Shinto Eguchi,et al.  Local model uncertainty and incomplete‐data bias (with discussion) , 2005 .

[27]  Xin-Yuan Song,et al.  Bayesian analysis of nonlinear structural equation models with mixed continuous, ordered and unordered categorical, and nonignorable missing data , 2008 .

[28]  K. Yuan,et al.  5. Three Likelihood-Based Methods for Mean and Covariance Structure Analysis with Nonnormal Missing Data , 2000 .

[29]  Simo Puntanen,et al.  Proceedings of the Second International Tampere Conference in Statistics : University of Tampere, Tampere, Finland, 1-4 June 1987 , 1987 .

[30]  P. Bentler,et al.  ML Estimation of Mean and Covariance Structures with Missing Data Using Complete Data Routines , 1999 .

[31]  Albert Satorra,et al.  ASYMPTOTIC ROBUSTNESS IN MULTIPLE GROUP LINEAR-LATENT VARIABLE MODELS , 2002, Econometric Theory.

[32]  Ke-Hai Yuan,et al.  SEM with Missing Data and Unknown Population Distributions Using Two-Stage ML: Theory and Its Application , 2008, Multivariate behavioral research.

[33]  J G Ibrahim,et al.  Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. , 1996, Biometrics.

[34]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[35]  P. Allison Estimation of Linear Models with Incomplete Data , 1987 .

[36]  James L. Arbuckle,et al.  Full Information Estimation in the Presence of Incomplete Data , 1996 .

[37]  Takahiro Hoshino,et al.  A LATENT VARIABLE MODEL WITH NON-IGNORABLE MISSING DATA , 2005 .

[38]  Ernst Wit,et al.  Local model uncertainty and incomplete-data bias , 2005 .

[39]  Sik-Yum Lee,et al.  Bayesian analysis of latent variable models with non-ignorable missing outcomes from exponential family. , 2007, Statistics in medicine.

[40]  S. Lipsitz,et al.  Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable , 2001 .

[41]  P. Bentler,et al.  Robustness of normal theory statistics in structural equation models , 1991 .

[42]  Paul P. Biemer,et al.  Introduction to Survey Quality , 2003 .

[43]  R. Little,et al.  Selection and pattern-mixture models , 2008 .

[44]  Clifford C. Clogg,et al.  Handbook of statistical modeling for the social and behavioral sciences , 1995 .

[45]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[46]  W. Meredith Measurement invariance, factor analysis and factorial invariance , 1993 .

[47]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[48]  David Thissen,et al.  On the relationship between the higher-order factor model and the hierarchical factor model , 1999 .

[49]  Cécile Proust-Lima,et al.  The International Journal of Biostatistics Pattern Mixture Models and Latent Class Models for the Analysis of Multivariate Longitudinal Data with Informative Dropouts , 2011 .

[50]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[51]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[52]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[53]  R. Little,et al.  Pattern-mixture models for multivariate incomplete data with covariates. , 1996, Biometrics.

[54]  T. W. Anderson Linear latent variable models and covariance structures , 1989 .

[55]  Mortaza Jamshidian,et al.  Strategies for Analysis of Incomplete Data , 2004 .

[56]  Nian-Sheng Tang,et al.  ANALYSIS OF NONLINEAR STRUCTURAL EQUATION MODELS WITH NONIGNORABLE MISSING COVARIATES AND ORDERED CATEGORICAL DATA , 2006 .

[57]  Bengt Muthén,et al.  On structural equation modeling with data that are not missing completely at random , 1987 .

[58]  A. Bryman,et al.  Handbook of data analysis , 2004 .

[59]  Roderick J. A. Little,et al.  Analysis of multivariate missing data with nonignorable nonresponse , 2003 .

[60]  Roderick J. A. Little,et al.  A Class of Pattern-Mixture Models for Normal Incomplete Data , 1994 .

[61]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[62]  Peter M. Bentler,et al.  EQS : structural equations program manual , 1989 .

[63]  Sik-Yum Lee Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data , 2006 .

[64]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[65]  Gregor Sočan,et al.  Handbook of latent variable and related models , 2007 .

[66]  Kani Chen,et al.  Parametric models for response‐biased sampling , 2001 .

[67]  Albert Satorra,et al.  Model Conditions for Asymptotic Robustness in the Analysis of Linear Relations , 1990 .