Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy

[1]  M. Sauer,et al.  Expansion microscopy of cellular and bacterial membranes by functionalized ceramides , 2020 .

[2]  F. Schumacher,et al.  A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae , 2020, Frontiers in Cellular and Infection Microbiology.

[3]  J. Hofkens,et al.  Evaluation of Direct Grafting Strategies via Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. , 2020, ACS nano.

[4]  M. Sauer,et al.  Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM) , 2020, bioRxiv.

[5]  T. Rudel,et al.  The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion , 2020, Cellular microbiology.

[6]  Adam H. Marblestone,et al.  Expansion Microscopy of Lipid Membranes , 2019, bioRxiv.

[7]  M. Sauer,et al.  Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy , 2019, bioRxiv.

[8]  S. Banhart,et al.  Sphingolipid Metabolism and Transport in Chlamydia trachomatis and Chlamydia psittaci Infections , 2019, Front. Cell Dev. Biol..

[9]  V. Kozjak-Pavlovic,et al.  Diverse Facets of Sphingolipid Involvement in Bacterial Infections , 2019, Front. Cell Dev. Biol..

[10]  M. Sauer,et al.  Detection of Chlamydia Developmental Forms and Secreted Effectors by Expansion Microscopy , 2019, Front. Cell. Infect. Microbiol..

[11]  Keara M. Lane,et al.  Mechanically resolved imaging of bacteria using expansion microscopy , 2019, bioRxiv.

[12]  S. Rizzoli,et al.  A practical guide to optimization in X10 expansion microscopy , 2019, Nature Protocols.

[13]  Alexander H. Clowsley,et al.  Three-Dimensional and Chemical Mapping of Intracellular Signaling Nanodomains in Health and Disease with Enhanced Expansion Microscopy , 2019, ACS nano.

[14]  M. Sauer,et al.  Super-resolution microscopy demystified , 2019, Nature Cell Biology.

[15]  E. Boyden,et al.  Expansion microscopy: principles and uses in biological research , 2018, Nature Methods.

[16]  E. Boyden,et al.  Imaging cellular ultrastructures using expansion microscopy (U-ExM) , 2018, Nature Methods.

[17]  J. Seibel,et al.  Click reactions with functional sphingolipids , 2018, Biological chemistry.

[18]  S. Ghai,et al.  Understanding antibiotic resistance via outer membrane permeability , 2018, Infection and drug resistance.

[19]  Mark Ellisman,et al.  Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis , 2018, Nature Communications.

[20]  M. Sauer,et al.  Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria , 2017, Scientific Reports.

[21]  M. Beeby,et al.  Communication across the bacterial cell envelope depends on the size of the periplasm , 2017, PLoS biology.

[22]  Aaron R. Halpern,et al.  Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. , 2017, ACS nano.

[23]  S. Banhart,et al.  The cellular ceramide transport protein CERT promotes Chlamydia psittaci infection and controls bacterial sphingolipid uptake , 2017, Cellular microbiology.

[24]  S. Rizzoli,et al.  X10 expansion microscopy enables 25‐nm resolution on conventional microscopes , 2017, bioRxiv.

[25]  J. Seibel,et al.  Incorporation studies of clickable ceramides in Jurkat cell plasma membranes. , 2017, Chemical communications.

[26]  Edward S. Boyden,et al.  Iterative expansion microscopy , 2017, Nature Methods.

[27]  M. Heilemann,et al.  Single-Molecule Localization Microscopy in Eukaryotes. , 2017, Chemical reviews.

[28]  Zhipeng A. Wang,et al.  A Versatile Approach for Site-Specific Lysine Acylation in Proteins. , 2017, Angewandte Chemie.

[29]  Edward S Boyden,et al.  Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies , 2016, Nature Biotechnology.

[30]  J. Seibel,et al.  Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells. , 2016, Chemical communications.

[31]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[32]  M. Sauer,et al.  A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells , 2016, Journal of Immunology.

[33]  Joshua C Vaughan,et al.  Expansion microscopy with conventional antibodies and fluorescent proteins , 2016, Nature Methods.

[34]  M. Hecker,et al.  Proteomic analysis of the Simkania‐containing vacuole: the central role of retrograde transport , 2016, Molecular microbiology.

[35]  Jan C M van Hest,et al.  Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading. , 2015, Bioconjugate chemistry.

[36]  E. Gulbins,et al.  Ceramide and sphingosine in pulmonary infections , 2015, Biological chemistry.

[37]  T. Rudel,et al.  Neutral sphingomyelinase 2 is a key factor for PorB‐dependent invasion of Neisseria gonorrhoeae , 2015, Cellular microbiology.

[38]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[39]  Tobias Moser,et al.  A new probe for super-resolution imaging of membranes elucidates trafficking pathways , 2014, The Journal of cell biology.

[40]  A. Katritzky,et al.  17α-Ethynylestradiol Peptide Labeling by ‘Click’ Chemistry , 2012 .

[41]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[42]  P. Wertz,et al.  Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria , 2011, Antimicrobial Agents and Chemotherapy.

[43]  Chun-Hung Lin,et al.  An Acyloxymethyl Ketone‐Based Probe to Monitor the Activity of Glutathionylspermidine Amidase in Escherichia coli , 2011, Chembiochem : a European journal of chemical biology.

[44]  C. Elwell,et al.  Chlamydia trachomatis Co-opts GBF1 and CERT to Acquire Host Sphingomyelin for Distinct Roles during Intracellular Development , 2011, PLoS pathogens.

[45]  H. Agaisse,et al.  The Lipid Transfer Protein CERT Interacts with the Chlamydia Inclusion Protein IncD and Participates to ER-Chlamydia Inclusion Membrane Contact Sites , 2011, PLoS pathogens.

[46]  E. Toone,et al.  Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis , 2011, Proceedings of the National Academy of Sciences.

[47]  K. Hanada,et al.  Intracellular trafficking of ceramide by ceramide transfer protein , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[48]  David P. Wilson,et al.  Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence , 2008, BMC Microbiology.

[49]  A. Merrill,et al.  Aging Up-Regulates Expression of Inflammatory Mediators in Mouse Adipose Tissue1 , 2007, The Journal of Immunology.

[50]  Y. Hannun,et al.  Translational aspects of sphingolipid metabolism. , 2007, Trends in molecular medicine.

[51]  E. Gulbins,et al.  Biological aspects of ceramide-enriched membrane domains. , 2007, Progress in lipid research.

[52]  Li-he Zhang,et al.  An Efficient and Improved Procedure for Preparation of Triflyl Azide and Application in Catalytic Diazotransfer Reaction. , 2006 .

[53]  Li-he Zhang,et al.  An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction , 2005 .

[54]  E. Gulbins,et al.  Ceramide, membrane rafts and infections , 2004, Journal of Molecular Medicine.

[55]  Yusuf A. Hannun,et al.  The Ceramide-centric Universe of Lipid-mediated Cell Regulation: Stress Encounters of the Lipid Kind* , 2002, The Journal of Biological Chemistry.

[56]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[57]  T. Darville Chlamydia , 1998, Pediatrics In Review.

[58]  R. Heinzen,et al.  Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. , 1996, The EMBO journal.

[59]  M. Sauer,et al.  Supporting Information Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy , 2017 .