Regression Methods for Stochastic Control Problems

In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particularly useful for problems with high-dimensional state space and complex dependence structure of the underlying Markov process with respect to some control. The main idea of the algorithms is to simulate a set of trajectories under some reference measure and to use a dynamic program formulation combined with fast methods for approximating conditional expectations and functional optimizations on these trajectories. Theoretical properties of the presented algorithms are investigated and convergence to the optimal solution is proved under mild assumptions. Finally, we present numerical results showing the efficiency of regression algorithms in a case of a high-dimensional Bermudan basket options, in a model with a large investor and transaction costs.

[1]  Daniel Egloff Monte Carlo algorithms for optimal stopping and statistical learning , 2004, math/0408276.

[2]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[3]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[4]  M. Kohler,et al.  A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options , 2007, 0710.3640.

[5]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[6]  Universally consistent upper bounds for Bermudan options based on Monte Carlo and nonparametric regression , 2009 .

[7]  N. Meinshausen,et al.  MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE‐EXERCISE OPTIONS , 2004 .

[8]  Alfredo Ibáñez,et al.  Valuation by Simulation of Contingent Claims with Multiple Early Exercise Opportunities , 2004 .

[9]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[10]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[11]  R. Carmona,et al.  OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS , 2008 .

[12]  G. Milstein,et al.  MONTE CARLO EVALUATION OF AMERICAN OPTIONS USING CONSUMPTION PROCESSES , 2006 .

[13]  D. Belomestny,et al.  TRUE UPPER BOUNDS FOR BERMUDAN PRODUCTS VIA NON‐NESTED MONTE CARLO , 2009 .

[14]  Leif Andersen A Simple Approach to the Pricing of Bermudan Swaptions in the Multi-Factor Libor Market Model , 1999 .

[15]  F. Jamshidian The Duality of Optimal Exercise and Domineering Claims: a Doob-Meyer Decomposition Approach to the Snell Envelope , 2007 .

[16]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[17]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[18]  John Schoenmakers,et al.  Iterative construction of the optimal Bermudan stopping time , 2006, Finance Stochastics.

[19]  V. Spokoiny,et al.  Regression methods in pricing American and Bermudan options using consumption processes , 2009 .

[20]  Nan Chen,et al.  Additive and multiplicative duals for American option pricing , 2007, Finance Stochastics.

[21]  David Lamper,et al.  Monte Carlo valuation of American Options , 2004 .

[22]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[23]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[24]  L. C. G. Rogers,et al.  Pathwise Stochastic Optimal Control , 2007, SIAM J. Control. Optim..

[25]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[26]  Christian Bender,et al.  An iterative algorithm for multiple stopping: Convergence and stability , 2004 .

[27]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[28]  Bernard Lapeyre,et al.  Introduction to Stochastic Calculus Applied to Finance , 2007 .

[29]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .