Orthogonal polynomial solutions of linear ordinary dierential equations
暂无分享,去创建一个
Kil Hyun Kwon | Lance L. Littlejohn | W. N. Everitt | L. Littlejohn | R. Wellman | K. Kwon | R. Wellman
[1] A. Zayed. Advances in Shannon's Sampling Theory , 1993 .
[2] On Sobolev Orthogonality for the Generalized Laguerre Polynomials , 1996 .
[3] Finding differential equations for symmetric generalized ultraspherical polynomials by using inversion methods , 1999, math/9908147.
[4] Kil Hyun Kwon,et al. Characterizations of orthogonal polynomials satisfying differential equations , 1994 .
[5] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[6] Luc Haine,et al. Bispectral darboux transformations: An extension of the Krall polynomials , 1997 .
[7] H. Bavinck. Differential operators having Sobolev type Laguerre polynomials as eigenfunctions , 2001 .
[8] F. A. Grünbaum,et al. Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation , 1996 .
[9] W. N. Everitt,et al. The symmetric form of the Koekoeks' Laguerre type differential equation , 1995 .
[10] H. Bavinck,et al. Differential operators having symmetric orthogonal polynomials as eigenfunctions , 1999 .
[11] R. Koekoek,et al. On a difference equation for generalizations of Charlier polynomials , 1995, math/9908144.
[12] F. Alberto Grünbaum,et al. Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials , 1998 .
[13] Sobolev orthogonality for the Gegenbauer polynomials {C n (-N+ 1 2 ) } n?0 , 1998 .
[14] Mourad E. H. Ismail,et al. An electrostatics model for zeros of general orthogonal polynomials , 2000 .
[15] Jesús S. Dehesa,et al. Some connection and linearization problems for polynomials in and beyond the Askey scheme , 2001 .
[16] L. Littlejohn,et al. Orthogonal polynomial eigenfunctions of second-order partial differerential equations , 2001 .
[17] R. Koekoek. Differential equations for symmetric generalized ultraspherical polynomials , 1999, math/9908143.
[18] I. Jung,et al. Differential equations and Sobolev orthogonality , 1995 .
[19] Andrei Martínez-Finkelshtein,et al. Asymptotic properties of Sobolev orthogonal polynomials , 1998 .
[20] P. Forrester,et al. Electrostatics and the zeros of the classical polynomials , 1986 .
[21] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[22] Kil Hyun Kwon,et al. CLASSIFICATION OF CLASSICAL ORTHOGONAL POLYNOMIALS , 1997 .
[23] E. C. Titchmarsh. ON EXPANSIONS IN EIGENFUNCTIONS (II) , 1941 .
[24] R. Koekoek. Generalizations of the classical laguerre polynomials and some q-analogues , 1990 .
[25] Wolfgang Hahn,et al. Über die Jacobischen Polynome und zwei verwandte Polynomklassen , 1935 .
[26] H. L. Krall,et al. Differential equations of infinite order for orthogonal polynomials , 1966 .
[27] The jacobi inversion formula , 1999, math/9908148.
[28] K. Kwon,et al. A characterization of Hermite polynomials , 1997 .
[29] Antonio J. Durán,et al. Functions with Given Moments and Weight Functions for Orthogonal Polynomials , 1993 .
[30] Francisco Marcellán,et al. On recurrence relations for Sobolev orthogonal polynomials , 1995 .
[31] H. L. Krall,et al. Certain differential equations for Tchebycheff polynomials , 1938 .
[32] Lance L. Littlejohn,et al. Orthogonal Polynomial Solutions of Spectral Type Differential Equations: Magnus' Conjecture , 2001, J. Approx. Theory.
[33] F. Marcellán,et al. Jacobi-Sobolev-type orthogonal polynomials: second-order differential equation and zeros , 1998 .
[34] H. Bavinck,et al. Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions , 1998 .
[35] H. Bavinck. A note on the Koekoek's differential equation for generalized Jacobi polynomials , 2000 .
[36] F. Marcellán,et al. Orthogonal polynomials on Sobolev spaces: old and new directions , 1993 .
[37] F. Grünbaum,et al. Differential equations in the spectral parameter , 1986 .
[38] H. Bavinck. Differential operators having Sobolev-type Jacobi polynomials as eigenfunctions , 2003 .
[39] D. Nualart,et al. Chaotic and predictable representation for L'evy Processes , 2000 .
[40] M. Ismail. More on Electrostatic Models for Zeros of Orthagonal Polynomials , 2000 .
[41] Allan M. Krall,et al. Orthogonal polynomials satisfying fourth order differential equations , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[42] F. Grünbaum. Electrostatic interpretation for the zeros of certain polynomials and the Darboux process , 2001 .
[43] E. Hendriksen,et al. A Bessel type orthogonal polynomial system , 1984 .
[44] Kil Hyun Kwon,et al. Orthogonalizing Weights of Tchebychev Sets of Polynomials , 1992 .
[45] Pascal Maroni. An integral representation for the Bessel form , 1995 .
[46] S. Bochner,et al. Über Sturm-Liouvillesche Polynomsysteme , 1929 .
[47] H. Bavinck. A direct approach to Koekoek's differential equation for generalized Laguerre polynomials , 1995 .
[48] Alexei Zhedanov,et al. A method of constructing Krall's polynomials , 1999 .
[49] H. Kramer,et al. A Generalized Sampling Theorem , 1959 .
[50] An application in stochastics of the Laguerre-type polynomials , 2001 .
[51] L. Vinet,et al. A method to study the Krall and q -Krall polynomials , 2001 .
[52] R. Koekoek,et al. A generalization of Laguerre polynomials , 1993 .
[53] A. Sri Ranga,et al. Orthogonal Functions , 1998 .
[54] H. Bavinck. Linear perturbations of differential or difference operators with polynomials as eigenfunctions , 1997 .
[55] Tom H. Koornwinder,et al. Orthogonal Polynomials With Weight Function (1 - x) α ( l + x) β + M δ(x + 1) + Nδ(x - 1) , 1984, Canadian Mathematical Bulletin.
[56] F. Grünbaum,et al. The q -version of a theorem of Bochner , 1996 .
[57] Lance L. Littlejohn,et al. Symmetric and Symmetrisable Differential Expressions , 1990 .
[58] Sobolev orthogonal polynomials: The discrete-continuous case , 1999 .
[59] J. Koekoek,et al. Differential equations for generalized Jacobi polynomials , 2000 .
[60] I. Jung,et al. Sobolev orthogonal polynomials and spectral differential equations , 1995 .
[61] Antonio J. Durán,et al. The Stieltjes moments problem for rapidly decreasing functions , 1989 .
[62] Lance L. Littlejohn,et al. A General Left-Definite Theory for Certain Self-Adjoint Operators with Applications to Differential Equations , 2002 .
[63] F. Alberto Grünbaum,et al. Some functions that generalize the Krall-Laguerre polynomials , 1999 .
[64] Roelof Koekoek,et al. On a differential equation for Koornwinder's generalized Laguerre polynomials , 1991 .
[65] Gangjoon Yoon,et al. Symmetrizability of differential equations having orthogonal polynomial solutions , 1997 .
[66] Kil Hyun Kwon,et al. Self-Adjoint Operators Generated from Non-Lagrangian Symmetric Differential Equations Having Orthogonal Polynomial Eigenfunctions , 2001 .
[67] Lance L. Littlejohn,et al. On the classification of differential equations having orthogonal polynomial solutions , 1984 .
[68] K. H. Kwon,et al. SOBOLEV ORTHOGONAL POLYNOMIALS AND SECOND ORDER DIFFERENTIAL EQUATION II , 1996 .
[69] Peter Lesky,et al. Die charakterisierung der klassischen orthogonalen polynome durch Sturm-Liouvillesche Differentialgleichungen , 1962 .
[70] P. Butzer,et al. Sampling theorems associated with fourth- and higher-order self-adjoint eigenvalue problems , 1994 .