Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points?

Two different classes of exponential fitted Runge-Kutta collocation methods are considered: methods with fixed points and methods with frequency-dependent points. For both cases we have obtained extensions of the classical two-stage Gauss, RadauIIA and LobattoIIIA methods. Numerical examples reveal important differences between both approaches.

[1]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[2]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[3]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[4]  Beatrice Paternoster,et al.  A Gauss quadrature rule for oscillatory integrands , 2001 .

[5]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[6]  T. E. Simos,et al.  Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations , 1998 .

[7]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[8]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[9]  Rüdiger Weiner,et al.  On the numerical integration of second-order initial value problems with a periodic forcing function , 1986, Computing.

[10]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[11]  K. Ozawa A four-stage implicit Runge-Kutta-Nyström method with variable coefficients for solving periodic initial value problems , 1999 .

[12]  Peter Albrecht,et al.  A new theoretical approach to Runge-Kutta methods , 1987 .

[13]  H. De Meyer,et al.  Frequency determination and step-length control for exponentially-fitted Runge---Kutta methods , 2001 .

[14]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[15]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[16]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[17]  Jesús Vigo-Aguiar,et al.  AN EMBEDDED EXPONENTIALLY-FITTED RUNGE-KUTTA METHOD FOR THE NUMERICAL SOLUTION OF THE SCHRODINGER EQUATION AND RELATED PERIODIC INITIAL-VALUE PROBLEMS , 2000 .

[18]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[19]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[20]  Ben P. Sommeijer,et al.  Phase-Lag Analysis of Implicit Runge–Kutta Methods , 1986 .

[21]  Liviu Gr Ixaru,et al.  Numerical methods for differential equations and applications , 1984 .

[22]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[23]  Theodore E. Simos New Embedded Explicit Methods with Minimal Phase-lag for the Numerical Integration of the Schrödinger Equation , 1998, Comput. Chem..