Knowledge Management as the Basis of Crosscutting Problem-Solving Approaches

In Chap. 2, we argue that supply chain configuration is one of the principal supply chain management decisions and that it has a profound impact on other subsequent managerial decisions. As described therein, the supply chain configuration problem is a complex problem, which is composed of several sub-problems. It is also emphasized that the solutions to these problems require design, modeling, and problem-solving techniques based on knowledge from various fields such as systems science, systems engineering, operations research, industrial engineering, decision sciences, management science, statistics, information sciences, computer science, and artificial intelligence. Some of the prominent techniques utilized from these fields are information modeling, process modeling, simulation modeling, data mining, and optimization. We build on this proposition by adopting a key problem of information integration in the supply chain, which has an embedded structure representing various sub-problems, and how its management relates many of the concepts espoused in this book about supply chain configuration. Also, this problem serves as a prime example of how crosscutting approaches drawn from various disciplines highlighted above may be adopted in devising solutions for the complex supply chain configuration problem. Before we proceed further, let us first develop a clear understanding of the information integration problem in the supply chain.

[1]  Seungjin Whang,et al.  Coordination in operations: A taxonomy , 1995 .

[2]  Naga Venkata Sudhakar Kolluru Sudhakar Enterprise governance model for hybrid cloud: IT Professional Conference @ National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA , 2014 .

[3]  Nicola Guarino,et al.  Formal ontology, conceptual analysis and knowledge representation , 1995, Int. J. Hum. Comput. Stud..

[4]  John McCarthy,et al.  WHAT IS ARTIFICIAL INTELLIGENCE , 1998 .

[5]  Andrew J. Clark,et al.  An informal survey of multi‐echelon inventory theory , 1972 .

[6]  John D. C. Little,et al.  TAUTOLOGIES, MODELS AND THEORIES: CAN WE FIND “LAWS” OF MANUFACTURING? , 1992 .

[7]  Thomas R. Gruber,et al.  A Translation Approach to Portable Ontologies , 1993 .

[8]  Frank Y. Chen,et al.  Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information.: The Impact of Forecasting, Lead Times, and Information. , 2000 .

[9]  Markus Stumptner,et al.  An overview of knowledgedbased configuration , 1997 .

[10]  A. Alan B. Pritsker,et al.  Modeling in Performance-Enhancing Processes , 1997, Oper. Res..

[11]  D. Simchi-Levi,et al.  The impact of exponential smoothing forecasts on the bullwhip effect , 2000 .

[12]  Mark S. Fox,et al.  Agent-Oriented Supply-Chain Management , 2000 .

[13]  Stephen C. Graves,et al.  A Single-Item Inventory Model for a Nonstationary Demand Process , 1999, Manuf. Serv. Oper. Manag..

[14]  Armen Tumanyan,et al.  Problem taxonomy: a step towards effective information sharing in supply chain management , 2007 .

[15]  Hau L. Lee,et al.  Information distortion in a supply chain: the bullwhip effect , 1997 .

[16]  Jayashankar M. Swaminathan,et al.  Modeling Supply Chain Dynamics: A Multiagent Approach , 1998 .

[17]  James J. Solberg,et al.  System Integration in Intelligent Manufacturing: An Introduction , 1992 .

[18]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[19]  William T. Morris,et al.  On the Art of Modeling , 1967 .

[20]  Michael Grüninger,et al.  Ontologies for Enterprise Integration , 1994, CoopIS.

[21]  Charu Chandra,et al.  Enterprise architectural framework for supply-chain integration , 2001, Ind. Manag. Data Syst..

[22]  Hau L. Lee,et al.  Strategic Analysis of Integrated Production-Distribution Systems: Models and Methods , 1988, Oper. Res..

[23]  Ton G. de Kok,et al.  Optimal control of a divergent multi-echelon inventory system , 1998, Eur. J. Oper. Res..

[24]  George J. Klir,et al.  Facets of Systems Science , 1991 .

[25]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[26]  Ivica Veza,et al.  Integrating process and ontology to support supply chain modelling , 2011, Int. J. Comput. Integr. Manuf..

[27]  R. Ackoff Towards a System of Systems Concepts , 1971 .

[28]  Kurt Kosanke CIMOSA—overview and status , 1995 .

[29]  Rahul C. Basole,et al.  Network analysis of supply chain systems: A systematic review and future research , 2013, Syst. Eng..

[30]  Douglas J. Thomas,et al.  Coordinated supply chain management , 1996 .

[31]  Richard Fikes,et al.  The Ontolingua Server: a tool for collaborative ontology construction , 1997, Int. J. Hum. Comput. Stud..

[32]  Robert Meersman,et al.  Ontologies and Databases: More than a Fleeting Resemblance , 2002 .

[33]  Magdi S. Mahmoud,et al.  Optimal inventory for unpredicted production capacity and raw material supply , 1986 .

[34]  Richard D. Metters,et al.  Quantifying the bullwhip effect in supply chains , 1997 .

[35]  Yan Dong,et al.  TOWARDS BETTER COORDINATION OF THE SUPPLY CHAIN , 2001 .

[36]  Wolter J. Fabrycky,et al.  Systems engineering and analysis , 1981 .

[37]  Nicholas R. Jennings,et al.  Cooperation in industrial multi-agent systems , 1994 .

[38]  Sudheer Gupta,et al.  Process Innovation, Product Differentiation, and Channel Structure: Strategic Incentives in a Duopoly , 1998 .

[39]  Hau L. Lee,et al.  Material Management in Decentralized Supply Chains , 1993, Oper. Res..

[40]  Hau L. Lee,et al.  The bullwhip effect in supply chains , 2015, IEEE Engineering Management Review.

[41]  Eb Erik Diks,et al.  Computational results for the control of a divergent N-echelon inventory system , 1999 .

[42]  Robert C. Leachman,et al.  A general framework for modeling production , 1989 .

[43]  Gérard P. Cachon,et al.  Managing Supply Chain Demand Variability with Scheduled Ordering Policies , 1999 .

[44]  Paul H. Zipkin,et al.  Customer-order information, leadtimes, and inventories , 1995 .

[45]  Michael Grüninger,et al.  Ontologies to Support Process Integration in Enterprise Engineering , 2000, Comput. Math. Organ. Theory.

[46]  John McCarthy,et al.  Programs with common sense , 1960 .

[47]  Ian Horrocks,et al.  OIL: An Ontology Infrastructure for the Semantic Web , 2001, IEEE Intell. Syst..

[48]  Simon Parsons Spinning the semantic web edited by Dieter Fensel, James Hendler, Harry Lieberman and Wolfgang Wahlster, MIT Press, 479 pp, ISBN 0-262-56212-X , 2006, Knowl. Eng. Rev..

[49]  John S. Edwards,et al.  Supply Chain Knowledge Management: A Literature Review , 2012, Expert Syst. Appl..

[50]  Spyros G. Tzafestas,et al.  Coordinated control of manufacturing/supply chains using multi-level techniques , 1994 .

[51]  David F. Pyke,et al.  Push and pull in manufacturing and distribution systems , 1990 .

[52]  Steffen Staab,et al.  Knowledge Processes and Ontologies , 2001, IEEE Intell. Syst..

[53]  Kevin Crowston,et al.  Tools for Inventing Organizations: Toward a Handbook of Organizational Processes , 1999 .

[54]  Chun-Che Huang,et al.  Sharing knowledge in a supply chain using the semantic web , 2010, Expert Syst. Appl..

[55]  Tonci Grubic,et al.  Supply chain ontology: Review, analysis and synthesis , 2010, Comput. Ind..

[56]  Eb Erik Diks,et al.  Multi-echelon systems: A service measure perspective , 1996 .

[57]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[58]  Thomas W. Malone,et al.  Modeling Coordination in Organizations and Markets , 1987 .

[59]  B. McKelvey Organizational Systematics-Taxonomy, Evolution, Classification , 1982 .

[60]  S. Graves Using Lagrangean Techniques to Solve Hierarchical Production Planning Problems , 1982 .

[61]  Bernd E. Hirsch,et al.  Information system concept for the management of distributed production , 1995 .

[62]  M. Gruninger,et al.  Integrated Ontologies for Enterprise Modelling , 1997 .

[63]  Kevin Crowston,et al.  The interdisciplinary study of coordination , 1994, CSUR.

[64]  Hau L. Lee,et al.  Effective Inventory and Service Management Through Product and Process Redesign , 1996, Oper. Res..

[65]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[66]  Jonathan D. Moizer,et al.  A knowledge chain management framework to support integrated decisions in global supply chains , 2014 .

[67]  D. Lambert,et al.  Supply Chain Management: Implementation Issues and Research Opportunities , 1998 .

[68]  Stephen A. W. Drew The application of hierarchical control methods to a managerial problem , 1975 .

[69]  N. Ireland,et al.  The co-operative game theory of the firm , 1984 .

[70]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[71]  Peter O'Grady,et al.  INTEGRATING KANBAN TYPE PULL SYSTEMS AND MRP TYPE PUSH SYSTEMS: INSIGHTS FROM A MARKOVIAN MODEL , 1992 .

[72]  Hector J. Levesque,et al.  Ability and Knowing How in the Situation Calculus , 2000, Stud Logica.

[73]  John F. Sowa,et al.  Ontology, Metadata, and Semiotics , 2000, ICCS.