Robust controlled invariant subspaces and disturbance decoupling for uncertain switched linear systems

[1]  Hiroki Saito,et al.  Disturbance decoupling via state feedback for uncertain switched linear systems , 2013, 52nd IEEE Conference on Decision and Control.

[2]  Naohisa Otsuka Generalized invariant subspaces and parameter insensitive disturbance-rejection problems with static output feedback , 2000, IEEE Trans. Autom. Control..

[3]  Giovanni Marro,et al.  On the robust controlled invariant , 1987 .

[4]  Anna Maria Perdon,et al.  The Disturbance Decoupling Problem for Systems Over a Ring , 1995 .

[5]  R. Curtain Invariance concepts in infinite dimensions , 1986 .

[6]  Naohisa Otsuka Generalized controlled and conditioned invariances for linear ω-periodic discrete-time systems , 2001 .

[7]  Naohisa Otsuka Necessary and sufficient conditions for parameter insensitive disturbance-rejection problems with dynamic output feedback , 2007, IMA J. Math. Control. Inf..

[8]  S. Ge,et al.  Switched Linear Systems: Control and Design , 2005 .

[9]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[10]  M. Kanat Camlibel,et al.  Disturbance decoupling of switched linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[11]  Naohisa Otsuka A necessary and sufficient condition for parameter insensitive disturbance-rejection problem with state feedback , 2006, Autom..

[12]  S. P. Bhattacharyya Generalized Controllability, (A, B)-invariant Subspaces and Parameter Invariant Control , 1983 .

[13]  J. Schumacher Compensator synthesis using (C,A,B)-pairs , 1980 .

[14]  A. Isidori Nonlinear Control Systems , 1985 .

[15]  Hans Zwart,et al.  Geometric Theory for Infinite Dimensional Systems , 1989 .

[16]  Giovanni Marro,et al.  Computing the maximum robust controlled invariant subspace , 1991 .

[17]  Takuya Soga,et al.  Stabilizability Conditions for Switched Linear Systems with Constant Input via Switched Observer , 2013 .

[18]  Giuseppe Conte,et al.  A necessary condition for disturbance decoupling with quadratic stability in switched linear systems , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[19]  Naohisa Otsuka Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..

[20]  M. Vidyasagar An Elementary Derivation of the Large Deviation Rate Function for Finite State Markov Chains , 2014 .

[21]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[22]  Hiroki Saito,et al.  Disturbance Decoupling with Quadratic Stability for Polytopic Uncertain Switched Linear Systems , 2012, ROCOND.

[23]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[24]  R. Decarlo,et al.  Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[25]  O. Grasselli,et al.  The geometric approach for linear periodic discrete-time systems , 1991 .

[26]  T. Soga,et al.  Quadratic Stabilizability for Polytopic Uncertain Switched Linear Systems via Switched Observer , 2014 .

[27]  Naohisa Otsuka,et al.  The disturbance decoupling problem with stability for switching dynamical systems , 2014, Syst. Control. Lett..

[28]  G. Zhai,et al.  Quadratic stabilizability of switched linear systems with polytopic uncertainties , 2003 .

[29]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[30]  Giuseppe Conte,et al.  A note on feedback stabilizability of switching systems under arbitrary switching , 2014, 22nd Mediterranean Conference on Control and Automation.