Robust controlled invariant subspaces and disturbance decoupling for uncertain switched linear systems
暂无分享,去创建一个
Hiroki Saito | Naohisa Otsuka | Giuseppe Conte | Anna Maria Perdon | A. Perdon | G. Conte | N. Otsuka | Hiroki Saito
[1] Hiroki Saito,et al. Disturbance decoupling via state feedback for uncertain switched linear systems , 2013, 52nd IEEE Conference on Decision and Control.
[2] Naohisa Otsuka. Generalized invariant subspaces and parameter insensitive disturbance-rejection problems with static output feedback , 2000, IEEE Trans. Autom. Control..
[3] Giovanni Marro,et al. On the robust controlled invariant , 1987 .
[4] Anna Maria Perdon,et al. The Disturbance Decoupling Problem for Systems Over a Ring , 1995 .
[5] R. Curtain. Invariance concepts in infinite dimensions , 1986 .
[6] Naohisa Otsuka. Generalized controlled and conditioned invariances for linear ω-periodic discrete-time systems , 2001 .
[7] Naohisa Otsuka. Necessary and sufficient conditions for parameter insensitive disturbance-rejection problems with dynamic output feedback , 2007, IMA J. Math. Control. Inf..
[8] S. Ge,et al. Switched Linear Systems: Control and Design , 2005 .
[9] G. Basile,et al. Controlled and conditioned invariants in linear system theory , 1992 .
[10] M. Kanat Camlibel,et al. Disturbance decoupling of switched linear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[11] Naohisa Otsuka. A necessary and sufficient condition for parameter insensitive disturbance-rejection problem with state feedback , 2006, Autom..
[12] S. P. Bhattacharyya. Generalized Controllability, (A, B)-invariant Subspaces and Parameter Invariant Control , 1983 .
[13] J. Schumacher. Compensator synthesis using (C,A,B)-pairs , 1980 .
[14] A. Isidori. Nonlinear Control Systems , 1985 .
[15] Hans Zwart,et al. Geometric Theory for Infinite Dimensional Systems , 1989 .
[16] Giovanni Marro,et al. Computing the maximum robust controlled invariant subspace , 1991 .
[17] Takuya Soga,et al. Stabilizability Conditions for Switched Linear Systems with Constant Input via Switched Observer , 2013 .
[18] Giuseppe Conte,et al. A necessary condition for disturbance decoupling with quadratic stability in switched linear systems , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).
[19] Naohisa Otsuka. Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..
[20] M. Vidyasagar. An Elementary Derivation of the Large Deviation Rate Function for Finite State Markov Chains , 2014 .
[21] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[22] Hiroki Saito,et al. Disturbance Decoupling with Quadratic Stability for Polytopic Uncertain Switched Linear Systems , 2012, ROCOND.
[23] Daniel Liberzon,et al. Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.
[24] R. Decarlo,et al. Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[25] O. Grasselli,et al. The geometric approach for linear periodic discrete-time systems , 1991 .
[26] T. Soga,et al. Quadratic Stabilizability for Polytopic Uncertain Switched Linear Systems via Switched Observer , 2014 .
[27] Naohisa Otsuka,et al. The disturbance decoupling problem with stability for switching dynamical systems , 2014, Syst. Control. Lett..
[28] G. Zhai,et al. Quadratic stabilizability of switched linear systems with polytopic uncertainties , 2003 .
[29] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[30] Giuseppe Conte,et al. A note on feedback stabilizability of switching systems under arbitrary switching , 2014, 22nd Mediterranean Conference on Control and Automation.