Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation

[1]  M. Karimi,et al.  An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers , 2015, Lasers in Medical Science.

[2]  J. Jansen,et al.  In vivo comparison between laser-treated and grit blasted/acid etched titanium. , 2014, Clinical oral implants research.

[3]  F. Cantatore,et al.  Osteocalcin: Skeletal and extra‐skeletal effects , 2013, Journal of cellular physiology.

[4]  A. C. Guastaldi,et al.  Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  U. Lerner,et al.  Osteoclast progenitor cells present in significant amounts in mouse calvarial osteoblast isolations and osteoclastogenesis increased by BMP-2. , 2013, Bone.

[6]  K. Sandhage,et al.  Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. , 2012, Biomaterials.

[7]  Tae-Hyun Nam,et al.  Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. , 2012, Biomaterials.

[8]  David L Cochran,et al.  Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[9]  J. Stašić,et al.  Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres – Comparative study , 2012 .

[10]  N. Donos,et al.  The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. , 2012, Bone.

[11]  Fanxin Long,et al.  Building strong bones: molecular regulation of the osteoblast lineage , 2011, Nature Reviews Molecular Cell Biology.

[12]  V. Goldberg,et al.  Surface contaminants inhibit osseointegration in a novel murine model. , 2011, Bone.

[13]  M. Yamauchi,et al.  Titanium surface topography affects collagen biosynthesis of adherent cells. , 2011, Bone.

[14]  C. Galli,et al.  The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. , 2011, Journal of periodontology.

[15]  R. Brånemark,et al.  Bone response to laser-induced micro- and nano-size titanium surface features. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[16]  A. Nanci,et al.  Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin. , 2011, Brazilian dental journal.

[17]  Fu-qiang Zhang,et al.  The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. , 2010, Journal of biomedical materials research. Part A.

[18]  T. Albrektsson,et al.  On implant surfaces: a review of current knowledge and opinions. , 2010, The International journal of oral & maxillofacial implants.

[19]  C. Park,et al.  Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. , 2009, Acta biomaterialia.

[20]  T. Albrektsson,et al.  Effects of titanium surface topography on bone integration: a systematic review. , 2009, Clinical oral implants research.

[21]  Wei Zhou,et al.  The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation , 2008, Journal of materials science. Materials in medicine.

[22]  P. Coulthard,et al.  The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials , 2007, BDJ.

[23]  L. Cooper,et al.  The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. , 2007, Biomaterials.

[24]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[25]  F. Pezzetti,et al.  Anatase Coating Improves Implant Osseointegration In Vivo , 2007, The Journal of craniofacial surgery.

[26]  S. Heo,et al.  Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. , 2006, Journal of biomedical materials research. Part A.

[27]  F. Butz,et al.  Harder and Stiffer Bone Osseointegrated to Roughened Titanium , 2006, Journal of dental research.

[28]  Yang Yang,et al.  Osteoblasts Generate Harder, Stiffer, and More Delamination‐Resistant Mineralized Tissue on Titanium Than on Polystyrene, Associated With Distinct Tissue Micro‐ and Ultrastructure , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[29]  M. Tonetti,et al.  Gene expression profiling of bone cells on smooth and rough titanium surfaces , 2004, Journal of materials science. Materials in medicine.

[30]  M. Tonetti,et al.  Roughness response genes in osteoblasts. , 2004, Bone.

[31]  S. K. Zaidi,et al.  Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression , 2004, Oncogene.

[32]  L. Claes,et al.  Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates , 2004, Archives of Orthopaedic and Trauma Surgery.

[33]  Julie Gold,et al.  An in vivo study of bone response to implants topographically modified by laser micromachining. , 2003, Biomaterials.

[34]  Z. Pászti,et al.  Surface treatment of screw shaped titanium dental implants by high intensity laser pulses , 2002 .

[35]  T. Albrektsson,et al.  Osteoinduction, osteoconduction and osseointegration , 2001, European Spine Journal.

[36]  G Schultes,et al.  Scanning electron microscopical analysis of laser-treated titanium implant surfaces--a comparative study. , 2000, Biomaterials.

[37]  M. Grynpas,et al.  Relationships between bone protein and mineral in developing porcine long bone and calvaria. , 2000, Bone.

[38]  S. Steinemann Titanium--the material of choice? , 1998, Periodontology 2000.

[39]  Yi Jin,et al.  In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure. , 1994, Journal of biomaterials applications.

[40]  C. Christiansen,et al.  Bone gla protein (osteocalcin) assay standardization report , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.