Multi-faceted clustering: spectral and probabilistic approaches

viii

[1]  Maria-Florina Balcan,et al.  Clustering with Interactive Feedback , 2008, ALT.

[2]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[3]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[4]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[5]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[6]  Sanjoy Dasgupta,et al.  Learning mixtures of Gaussians , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[7]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[8]  Arindam Banerjee,et al.  Active Semi-Supervision for Pairwise Constrained Clustering , 2004, SDM.

[9]  Rich Caruana,et al.  Meta Clustering , 2006, Sixth International Conference on Data Mining (ICDM'06).

[10]  Yoram Singer,et al.  A New Parameter Estimation Method for Gaussian Mixtures , 1998, NIPS 1998.

[11]  Honglak Lee,et al.  Efficient L1 Regularized Logistic Regression , 2006, AAAI.

[12]  Wei-Ying Ma,et al.  Locality preserving indexing for document representation , 2004, SIGIR '04.

[13]  Glenn Fung,et al.  The disputed federalist papers: SVM feature selection via concave minimization , 2003, TAPIA '03.

[14]  Chris H. Q. Ding,et al.  Web document clustering using hyperlink structures , 2001, Comput. Stat. Data Anal..

[15]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[16]  Shai Ben-David,et al.  Clusterability: A Theoretical Study , 2009, AISTATS.

[17]  Dan Roth,et al.  Interactive Feature Space Construction using Semantic Information , 2009, CoNLL.

[18]  Rada Mihalcea,et al.  Multilingual Subjectivity Analysis Using Machine Translation , 2008, EMNLP.

[19]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[20]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[21]  Ross D. Shachter,et al.  Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables , 1994, UAI.

[22]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[23]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[24]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[25]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[26]  James Allan,et al.  Interactive Clustering of Text Collections According to a User-Specified Criterion , 2007, IJCAI.

[27]  Xiaojun Wan,et al.  Using Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis , 2008, EMNLP.

[28]  Luis Gravano,et al.  An investigation of linguistic features and clustering algorithms for topical document clustering , 2000, SIGIR '00.

[29]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[30]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[31]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[32]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[33]  Shlomo Argamon,et al.  Computational methods in authorship attribution , 2009, J. Assoc. Inf. Sci. Technol..

[34]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[35]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[36]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[37]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[38]  Inderjit S. Dhillon,et al.  Simultaneous Unsupervised Learning of Disparate Clusterings , 2008, Stat. Anal. Data Min..

[39]  Ian Davidson,et al.  A principled and flexible framework for finding alternative clusterings , 2009, KDD.

[40]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[41]  Vikas Sindhwani,et al.  Document-Word Co-regularization for Semi-supervised Sentiment Analysis , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[42]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[43]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[44]  Jun Guo,et al.  Locality discriminating indexing for document classification , 2007, SIGIR.

[45]  Vincent Ng,et al.  Mining Clustering Dimensions , 2010, ICML.

[46]  Sheau-Ru Crystal Horng Sublinear convergence of the em algorithm , 1986 .

[47]  David M. Mount,et al.  A local search approximation algorithm for k-means clustering , 2002, SCG '02.

[48]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[49]  Tao Li,et al.  A Non-negative Matrix Tri-factorization Approach to Sentiment Classification with Lexical Prior Knowledge , 2009, ACL.

[50]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[51]  Thorsten Joachims,et al.  Supervised clustering with support vector machines , 2005, ICML.

[52]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[53]  Thomas Hofmann,et al.  Non-redundant data clustering , 2006, Knowledge and Information Systems.

[54]  Shlomo Argamon,et al.  The effect of OCR errors on stylistic text classification , 2006, SIGIR '06.

[55]  P. Sneath,et al.  Numerical Taxonomy , 1962, Nature.

[56]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[57]  M. Kugler,et al.  Feature subset selection for support vector machines using confident margin , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[58]  L. Sucheston Modern Probability Theory and its Applications. , 1961 .

[59]  Jiawei Han,et al.  Document clustering using locality preserving indexing , 2005, IEEE Transactions on Knowledge and Data Engineering.

[60]  Vincent Ng,et al.  Towards subjectifying text clustering , 2010, SIGIR.

[61]  Philip S. Yu,et al.  Text Classification by Labeling Words , 2004, AAAI.

[62]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[63]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[64]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[65]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[66]  Andrew McCallum,et al.  Active Learning by Labeling Features , 2009, EMNLP.

[67]  Aidan Finn,et al.  Learning to classify documents according to genre , 2006, J. Assoc. Inf. Sci. Technol..

[68]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[69]  Shai Ben-David,et al.  Measures of Clustering Quality: A Working Set of Axioms for Clustering , 2008, NIPS.

[70]  Robert E. Tarjan,et al.  Graph Clustering and Minimum Cut Trees , 2004, Internet Math..

[71]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[72]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[73]  Charles A. Micchelli,et al.  On Spectral Learning , 2010, J. Mach. Learn. Res..

[74]  Shlomo Argamon,et al.  Effects of Age and Gender on Blogging , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[75]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[76]  Sanjeev Arora,et al.  Learning mixtures of arbitrary gaussians , 2001, STOC '01.

[77]  Vincent Ng,et al.  Mine the Easy, Classify the Hard: A Semi-Supervised Approach to Automatic Sentiment Classification , 2009, ACL.

[78]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[79]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[80]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[81]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[82]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[83]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[84]  Ian Davidson,et al.  Finding Alternative Clusterings Using Constraints , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[85]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[86]  James Allan,et al.  An interactive algorithm for asking and incorporating feature feedback into support vector machines , 2007, SIGIR.

[87]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[88]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[89]  Mark Sandler,et al.  On the use of linear programming for unsupervised text classification , 2005, KDD '05.

[90]  Naftali Tishby,et al.  Margin based feature selection - theory and algorithms , 2004, ICML.

[91]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.