Robust eigenvalue assignment in second-order systems: A gradient flow approach
暂无分享,去创建一个
James Lam | Daniel W. C. Ho | J. Lam | D. Ho | H. Chan | H. C. Chan
[1] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[2] L. Meirovitch. Analytical Methods in Vibrations , 1967 .
[3] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[4] Uwe Helmke. Isospectral flows on symmetric matrices and the Riccati equation , 1991 .
[5] John B. Moore,et al. A gradient flow approach to computing lq optimal output feedback gains , 1994 .
[6] Shankar P. Bhattacharyya,et al. Robust and well‐conditioned eigenstructure assignment via sylvester's equation , 1983 .
[7] S. Nash,et al. Approaches to robust pole assignment , 1989 .
[8] R. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .
[9] K. Chu. The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .
[10] Jun Wang,et al. A multilayer recurrent neural network for on-line synthesis of minimum-norm linear feedback control systems via pole assignment , 1996, Autom..
[11] Biswa Nath Datta,et al. Numerically robust pole assignment for second-order systems , 1996 .
[12] Daniel J. Inman,et al. A Note on Pole Placement of Mechanical Systems , 1991 .
[13] B. Datta,et al. Feedback stabilization of a second-order system: A nonmodal approach , 1993 .
[14] Leonard Meirovitch,et al. Dynamics And Control Of Structures , 1990 .
[15] Jer-Nan Juang,et al. ROBUST EIGENSYSTEM ASSIGNMENT FOR STATE ESTIMATORS USING SECOND-ORDER MODELS , 1992 .
[16] Stable eigenvalue placement by constrained optimization , 1990 .
[17] John B. Moore,et al. Balanced realizations via gradient flow techniques , 1990 .
[18] Jun Wang,et al. Recurrent neural networks for synthesizing linear control systems via pole placement , 1995 .
[19] K. Kleinschmidt,et al. Book Reviews : INDUSTRIAL NOISE AND VIBRATION CONTROL J.D. Irwin and E.R. Graf Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979 , 1980 .
[20] Alan J. Laub,et al. Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.
[21] Biswa Nath Datta,et al. Linear and numerical linear algebra in control theory: some research problems , 1994 .
[22] James Lam,et al. A gradient flow approach to the robust pole-placement problem , 1995 .