Robust eigenvalue assignment in second-order systems: A gradient flow approach

In this paper the problem of robust eigenvalue assignment in second-order systems by combined derivative and proportional state feedback is examined. It is shown that almost arbitrary assignment can be achieved by solving a linear matrix equation or symmetric linear system. Based on the fact that the robustness of the spectrum is characterized by the condition number of the eigenvectors, an alternative objective function is defined and minimized by utilizing the gradient flow technique. Numerical tests are performed to illustrate the approach. © 1997 John Wiley & Sons, Ltd.

[1]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[2]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[3]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[4]  Uwe Helmke Isospectral flows on symmetric matrices and the Riccati equation , 1991 .

[5]  John B. Moore,et al.  A gradient flow approach to computing lq optimal output feedback gains , 1994 .

[6]  Shankar P. Bhattacharyya,et al.  Robust and well‐conditioned eigenstructure assignment via sylvester's equation , 1983 .

[7]  S. Nash,et al.  Approaches to robust pole assignment , 1989 .

[8]  R. Brockett Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .

[9]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .

[10]  Jun Wang,et al.  A multilayer recurrent neural network for on-line synthesis of minimum-norm linear feedback control systems via pole assignment , 1996, Autom..

[11]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[12]  Daniel J. Inman,et al.  A Note on Pole Placement of Mechanical Systems , 1991 .

[13]  B. Datta,et al.  Feedback stabilization of a second-order system: A nonmodal approach , 1993 .

[14]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[15]  Jer-Nan Juang,et al.  ROBUST EIGENSYSTEM ASSIGNMENT FOR STATE ESTIMATORS USING SECOND-ORDER MODELS , 1992 .

[16]  Stable eigenvalue placement by constrained optimization , 1990 .

[17]  John B. Moore,et al.  Balanced realizations via gradient flow techniques , 1990 .

[18]  Jun Wang,et al.  Recurrent neural networks for synthesizing linear control systems via pole placement , 1995 .

[19]  K. Kleinschmidt,et al.  Book Reviews : INDUSTRIAL NOISE AND VIBRATION CONTROL J.D. Irwin and E.R. Graf Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979 , 1980 .

[20]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[21]  Biswa Nath Datta,et al.  Linear and numerical linear algebra in control theory: some research problems , 1994 .

[22]  James Lam,et al.  A gradient flow approach to the robust pole-placement problem , 1995 .