PRISMA: PRoximal Iterative SMoothing Algorithm

Motivated by learning problems including max-norm regularized matrix completion and clustering, robust PCA and sparse inverse covariance selection, we propose a novel optimization algorithm for minimizing a convex objective which decomposes into three parts: a smooth part, a simple non-smooth Lipschitz part, and a simple non-smooth non-Lipschitz part. We use a time variant smoothing strategy that allows us to obtain a guarantee that does not depend on knowing in advance the total number of iterations nor a bound on the domain.

[1]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[2]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[3]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[4]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[5]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[6]  Ruslan Salakhutdinov,et al.  Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.

[7]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[8]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[11]  Stéphane Canu,et al.  Kernel Basis Pursuit , 2005, Rev. d'Intelligence Artif..

[12]  Masashi Sugiyama,et al.  A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices , 2010, ICML.

[13]  Martin J. Wainwright,et al.  High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2006, NIPS.

[14]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[15]  Martin Jaggi,et al.  Convex Optimization without Projection Steps , 2011, ArXiv.

[16]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[17]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[18]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[19]  Lu Li,et al.  An inexact interior point method for L1-regularized sparse covariance selection , 2010, Math. Program. Comput..

[20]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[21]  Alexander G. Gray,et al.  Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure , 2012, ICML.

[22]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[23]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[24]  Yoram Singer,et al.  Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..

[25]  Ali Jalali,et al.  Clustering using Max-norm Constrained Optimization , 2012, ICML.

[26]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[27]  Nathan Srebro,et al.  Concentration-Based Guarantees for Low-Rank Matrix Reconstruction , 2011, COLT.

[28]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[29]  Yurii Nesterov,et al.  Excessive Gap Technique in Nonsmooth Convex Minimization , 2005, SIAM J. Optim..

[30]  I. Loris,et al.  On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty , 2011, 1104.1087.

[31]  Tong Zhang,et al.  Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints , 2010, SIAM J. Optim..