Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach

This study proposes a novel framework which combines marginal probabilities of default estimated from a structural credit risk model with the consistent information multivariate density optimization (CIMDO) methodology and the generalized dynamic factor model (GDFM) supplemented by a dynamic t-copula. The framework models banks’ default dependence explicitly and captures the time-varying non-linearities and feedback effects typical of financial markets. It measures banking systemic credit risk in the three forms categorized by the European Central Bank: (1) credit risk common to all banks; (2) credit risk in the banking system conditional on distress on a specific bank or combinations of banks; and (3) the buildup of banking system vulnerabilities over time which may unravel disorderly. In addition, the estimates of the common components of the banking sector short-term and conditional forward default measures contain early warning features, and the identification of their drivers is useful for macroprudential policy. Finally, the framework produces robust out-of-sample forecasts of the banking systemic credit risk measures. This paper advances the agenda of making macroprudential policy operational.

[1]  S. Koopman,et al.  Systemic Risk Diagnostics: Coincident Indicators and Early Warning Signals , 2010, SSRN Electronic Journal.

[2]  C. Borio,et al.  Procyclicality of the financial system and financial stability: issues and policy options , 2001 .

[3]  E. Perotti,et al.  Liquidity risk charges as a macroprudential tool , 2009 .

[4]  David Lando,et al.  Credit Risk Modeling , 2009 .

[5]  M. Barigozzi,et al.  Generalized Dynamic Factor Model + GARCH Exploiting Multivariate Information for Univariate Prediction , 2006 .

[6]  Aswath Damodaran Equity Risk Premiums (ERP): Determinants, Estimation and Implications – The 2011 Edition , 2011 .

[7]  Dean Fantazzini Dynamic Copula Modelling for Value at Risk , 2006 .

[8]  S. Koopman,et al.  Systematic risk diagnostics , 2010 .

[9]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[10]  Lu,et al.  An EArly-wArning And dynAmic ForEcAsting FrAmEwork oF dEFAult ProbAbilitiEs For thE mAcroPrudEntiAl Policy , 2012 .

[11]  Estimating Default Frequencies and Macrofinancial Linkages in the Mexican Banking Sector , 2009 .

[12]  Nowcasting Irish GDP , 2013 .

[13]  Xiaohong Chen,et al.  Copula-Based Nonlinear Quantile Autoregression , 2008 .

[14]  Alex W. H. Chan Merton, Robert C. , 2010 .

[15]  Estimating Default Frequencies and Macrofinancial Linkages in the Mexican Banking Sector , 2009 .

[16]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[17]  M. Melecký,et al.  Macroprudential Stress Testing of Credit Risk: A Practical Approach for Policy Makers , 2012 .

[18]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[19]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[20]  Matteo Barigozzi,et al.  A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models , 2008 .

[21]  Kaj Nyström,et al.  Univariate Extreme Value Theory , GARCH and Measures of Risk , 2022 .

[22]  Miguel A. Segoviano Consistent information multivariate density optimizing methodology , 2006 .

[23]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[24]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[25]  A. Lo,et al.  Econometric Measures of Systemic Risk in the Finance and Insurance Sectors , 2010 .

[26]  M. Barigozzi,et al.  A Robust Criterion for Determining the Number of Factors in Approximate Factor Models , 2009 .

[27]  J. Duan,et al.  On the Equivalence of the KMV and Maximum Likelihood Methods for Structural Credit Risk Models , 2005 .

[28]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[29]  M. Barigozzi,et al.  Dynamic Factor GARCH Multivariate Volatility Forecast for a Large Number of Series , 2006 .

[30]  Samuel W. Malone,et al.  Macrofinancial risk analysis , 2008 .

[31]  A. Lucas,et al.  Conditional Probabilities for Euro Area Sovereign Default Risk , 2011 .

[32]  Andrew J. Patton On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation , 2002 .

[33]  R. Geske The Valuation of Corporate Liabilities as Compound Options , 1977, Journal of Financial and Quantitative Analysis.

[34]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[35]  R. Geske,et al.  Credit Risk and Risk Neutral Default Probabilities: Information About Rating Migrations and Defaults , 2003 .

[36]  Gianni De Nicoló,et al.  Systemic Real and Financial Risks: Measurement, Forecasting, and Stress Testing , 2011, SSRN Electronic Journal.

[37]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[38]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[39]  Does the GARCH Structural Credit Risk Model Make a Difference , 2011 .

[40]  J. Frankel,et al.  Are Leading Indicators of Financial Crises Useful for Assessing Country Vulnerability? Evidence from the 2008-09 Global Crisis , 2010 .

[41]  A. McNeil Extreme Value Theory for Risk Managers , 1999 .

[42]  Xisong Jin,et al.  Market- and Book-Based Models of Probability of Default for Developing Macroprudential Policy Tools , 2011 .

[43]  Benjamin M. Tabak,et al.  Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks , 2009 .

[44]  R. Moessner,et al.  Macroprudential Policy – A Literature Review , 2011 .

[45]  Andrew J. Patton Estimation of multivariate models for time series of possibly different lengths , 2006 .

[46]  Marc L. Ross,et al.  A Survey of Systemic Risk Analytics , 2014 .

[47]  Mathias Drehmann,et al.  Systemic Importance: Some Simple Indicators , 2011 .

[48]  M. Salmon,et al.  Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets , 2008 .

[49]  Marco Lippi,et al.  The Generalized Dynamic Factor Model , 2002 .

[50]  P. Hartmann,et al.  Systemic Risk: A Survey , 2000, SSRN Electronic Journal.

[51]  R. Engle Dynamic Conditional Correlation , 2002 .

[52]  C. Borio,et al.  Asset Prices, Financial and Monetary Stability: Exploring the Nexus , 2002 .

[53]  Marco Lippi,et al.  Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area , 2002 .

[54]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[55]  R. Engle,et al.  On the Economic Sources of Stock Market Volatility , 2008 .

[56]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[57]  Kaj Nyström,et al.  A Framework for Scenario Based Risk Management , 2002 .

[58]  David Lando,et al.  Credit Risk Modeling: Theory and Applications , 2004 .

[59]  C. Goodhart,et al.  House Prices and the Macroeconomy: Implications for Banking and Price Stability , 2007 .

[60]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[61]  R. Nelsen An Introduction to Copulas , 1998 .

[62]  Xisong Jin,et al.  An Early-warning and Dynamic Forecasting Framework of Default Probabilities for the Macroprudential Policy Indicators Arsenal , 2012 .

[63]  Ming Huang,et al.  How Much of Corporate-Treasury Yield Spread Is Due to Credit Risk?: A New Calibration Approach , 2003 .

[64]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[65]  Dirk G. Baur,et al.  The Structure and Degree of Dependence - A Quantile Regression Approach , 2011 .

[66]  Dušan Tanasković,et al.  Global systemically important banks: Assessment methodology and the additional loss absorbency requirement , 2015 .

[67]  Xin Huang,et al.  A Framework for Assessing the Systemic Risk of Major Financial Institutions , 2009 .

[68]  A. Kabundi,et al.  France in the global economy: a structural approximate dynamic factor model analysis , 2007, SSRN Electronic Journal.

[69]  Y. Tse,et al.  A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model With Time-Varying Correlations , 2002 .

[70]  Donald P. Cram,et al.  Assessing the Probability of Bankruptcy , 2004 .

[71]  Thierry Roncalli,et al.  Copulas for finance , 2000 .

[72]  Kostas Tsatsaronis,et al.  Attributing Systemic Risk to Individual Institutions , 2010 .

[73]  The GARCH Structural Credit Risk Model: Simulation Analysis and Application to the Bank CDS Market During the 2007-2008 Crisis , 2009 .

[74]  John M. Olin,et al.  A Closed-Form GARCH Option Pricing Model , 1997 .

[75]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[76]  Sreedhar T. Bharath,et al.  Forecasting Default with the Merton Distance to Default Model , 2008 .

[77]  I. Schumacher,et al.  Macroeconomic Conditions and Leverage in Monetary Financial Institutions: Comparing European countries and Luxembourg , 2012 .

[78]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[79]  S. Koopman,et al.  Macro, industry and frailty effects in defaults: The 2008 credit crisis in perspective , 2010 .

[80]  Charles Goodhart,et al.  Banking Stability Measures , 2009 .

[81]  Paweł Smaga,et al.  The Concept of Systemic Risk , 2014 .

[82]  Ming Huang,et al.  How Much of Corporate-Treasury Yield Spread is Due to Credit Risk? , 2002 .