Stochastic 2-D Navier—Stokes Equation

Abstract. In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier—Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions—Prodi solutions to the deterministic Navier—Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantly improves the earlier techniques for obtaining strong solutions, which depended on pathwise solutions to the Navier—Stokes martingale problem where the probability space is also obtained as a part of the solution.

[1]  Evgenii A. Novikov,et al.  Functionals and the random-force method in turbulence theory , 1965 .

[2]  Marek Capiński,et al.  Nonstandard Methods for Stochastic Fluid Mechanics , 1995 .

[3]  Viorel Barbu,et al.  Flow Invariance Preserving Feedback Controllers for the Navier–Stokes Equation , 2001 .

[4]  R. Temam Navier-Stokes Equations , 1977 .

[5]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .

[6]  A. Fursikov,et al.  Mathematical Problems of Statistical Hydromechanics , 1988 .

[7]  I. Gyöngy,et al.  On stochastics equations with respect to semimartingales ii. itô formula in banach spaces , 1982 .

[8]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[9]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[10]  E. Pardouxt,et al.  Stochastic partial differential equations and filtering of diffusion processes , 1980 .

[11]  H. Beirao da Veiga,et al.  Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .

[12]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[13]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[14]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[15]  Alain Bensoussan,et al.  Stochastic Navier-Stokes Equations , 1995 .

[16]  Jerzy Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Appendices , 1996 .

[17]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[18]  Sri Sritharan,et al.  Deterministic and Stochastic Control of Navier—Stokes Equation with Linear, Monotone, and Hyperviscosities , 2000 .

[19]  J. Menaldi,et al.  Impulse control of stochastic Navier-Stokes equations , 2003 .

[20]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[21]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[22]  B. Schmalfuß Qualitative properties for the stochastic Navier-Stokes equation , 1997 .

[23]  István Gyöngy,et al.  On stochastic equations with respect to semimartingales I. , 1980 .