From simulated annealing to stochastic continuation: a new trend in combinatorial optimization

Simulated annealing (SA) is a generic optimization method that is quite popular because of its ease of implementation and its global convergence properties. However, SA is widely reported to converge very slowly, and it is common practice to allow extra freedom in its design at the expense of losing global convergence guarantees. A natural way to increase the flexibility of SA is to allow the objective function and the communication mechanism to be temperature-dependent, the idea being to gradually reveal the complexity of the optimization problem and to increase the mixing rate at low temperatures. We call this general class of annealing processes stochastic continuation (SC). In the first part of this paper, we introduce SC starting from SA, and we derive simple sufficient conditions for the global convergence of SC. Our main result is interesting in two respects: first, the conditions for global convergence are surprisingly weak—in particular, they do not involve the variations of the objective function with temperature—and second, exponential cooling makes it possible to be arbitrarily close to the best possible convergence speed exponent of SA. The second part is devoted to the application of SC to the problem of producing aesthetically pleasing drawings of undirected graphs. We consider the objective function defined by Kamada and Kawai (Inf Process Lett 31(1):7–15, 1989), which measures the quality of a drawing as a weighted sum of squared differences between Euclidean and graph-theoretic inter-vertex distances. Our experiments show that SC outperforms SA with optimal communication setting both in terms of minimizing the objective function and in terms of standard aesthetic criteria.

[1]  Andreas Ludwig,et al.  A Fast Adaptive Layout Algorithm for Undirected Graphs , 1994, GD.

[2]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[3]  Sheldon H. Jacobson,et al.  On the convergence of generalized hill climbing algorithms , 2002, Discret. Appl. Math..

[4]  Shane G. Henderson,et al.  Convergence in Probability of Compressed Annealing , 2004, Math. Oper. Res..

[5]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[6]  O. Catoni,et al.  Piecewise constant triangular cooling schedules for generalized simulated annealing algorithms , 1998 .

[7]  Pierre-Jean Reissman,et al.  On Simulated annealing with temperature-dependent energy and temperature-dependent communication , 2011 .

[8]  O. Catoni Simulated annealing algorithms and Markov chains with rare transitions , 1999 .

[9]  A. Trouvé Cycle Decompositions and Simulated Annealing , 1996 .

[10]  Panos M. Pardalos,et al.  Improving the Neighborhood Selection Strategy in Simulated Annealing using the Optimal Stopping Problem , 2008 .

[11]  Isabelle E. Magnin,et al.  Optimization by Stochastic Continuation , 2010, SIAM J. Imaging Sci..

[12]  P. Groenen,et al.  The tunneling method for global optimization in multidimensional scaling , 1996 .

[13]  David Harel,et al.  Drawing graphs nicely using simulated annealing , 1996, TOGS.

[14]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[15]  P. C. Schuur,et al.  Classification of Acceptance Criteria for the Simulated Annealing Algorithm , 1997, Math. Oper. Res..

[16]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[17]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[18]  T. Chiang,et al.  On the convergence rate of annealing processes , 1987 .

[19]  Chin-Tu Chen,et al.  Image Restoration Using Gibbs Priors: Boundary Modeling, Treatment of Blurring, and Selection of Hyperparameter , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  C. Ribeiro,et al.  Clustering and clique partitioning: Simulated annealing and tabu search approaches , 1992 .

[21]  Olivier Catoni,et al.  Metropolis, Simulated Annealing, and Iterated Energy Transformation Algorithms: Theory and Experiments , 1996, J. Complex..

[22]  Franz-Josef Brandenburg,et al.  An Experimental Comparison of Force-Directed and Randomized Graph Drawing Algorithms , 1995, GD.

[23]  Mark Fielding,et al.  Simulated Annealing With An Optimal Fixed Temperature , 2000, SIAM J. Optim..

[24]  M. Desai Some results characterizing the finite time behaviour of the simulated annealing algorithm , 1999 .

[25]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[26]  O. Catoni Solving Scheduling Problems by Simulated Annealing , 1998 .

[27]  Chiang Tzuu-Shuh,et al.  On the convergence rate of annealing processes , 1988 .

[28]  Gabriele Grillo,et al.  Simulated annealing with time-dependent energy function , 1993 .

[29]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[30]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[31]  Sheldon Howard Jacobson,et al.  Analysis of Static Simulated Annealing Algorithms , 2002 .

[32]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[33]  David Harel,et al.  A fast multi-scale method for drawing large graphs , 2000, AVI '00.

[34]  Isabelle E. Magnin,et al.  A Stochastic Continuation Approach to Piecewise Constant Reconstruction , 2007, IEEE Transactions on Image Processing.

[35]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[36]  Isabelle E. Magnin,et al.  Stochastic nonlinear image restoration using the wavelet transform , 2003, IEEE Trans. Image Process..

[37]  Helen C. Purchase,et al.  Metrics for Graph Drawing Aesthetics , 2002, J. Vis. Lang. Comput..

[38]  M. Émery,et al.  Seminaire de Probabilites XXXIII , 1999 .

[39]  U Aickelin,et al.  Handbook of metaheuristics (International series in operations research and management science) , 2005 .

[40]  Convergence properties of simulated annealing for continuous global optimization , 1996 .

[41]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[42]  Mads Nielsen Graduated Nonconvexity by Functional Focusing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  P. Moral,et al.  On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .

[44]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[45]  S. Mitter,et al.  Metropolis-type annealing algorithms for global optimization in R d , 1993 .

[46]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[47]  Matthias Löwe Simulated annealing with time-dependent energy function via Sobolev inequalities , 1996 .

[48]  Jia-Ping Wang,et al.  Stochastic Relaxation on Partitions With Connected Components and Its Application to Image Segmentation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Isabelle E. Magnin,et al.  Simulated annealing, acceleration techniques, and image restoration , 1999, IEEE Trans. Image Process..

[50]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[51]  Padraig Cunningham,et al.  Application of Simulated Annealing to the Biclustering of Gene Expression Data , 2006, IEEE Transactions on Information Technology in Biomedicine.

[52]  Sheldon H. Jacobson,et al.  Finite-Time Performance Analysis of Static Simulated Annealing Algorithms , 2002, Comput. Optim. Appl..

[53]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[54]  Enver Yücesan,et al.  Analyzing the Performance of Generalized Hill Climbing Algorithms , 2004, J. Heuristics.

[55]  M. Locatelli Simulated Annealing Algorithms for Continuous Global Optimization: Convergence Conditions , 2000 .

[56]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[57]  H. Haario,et al.  Simulated annealing process in general state space , 1991, Advances in Applied Probability.

[58]  Mila Nikolova,et al.  Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..

[59]  Y. Bresler,et al.  ON THE CONVERGENCE OF METROPOLIS-TYPE RELAXATION AND ANNEALING WITH CONSTRAINTS , 2001, Probability in the Engineering and Informational Sciences.

[60]  tballest Séminaire de probabilités , 2013 .

[61]  Marco Locatelli,et al.  Convergence of a Simulated Annealing Algorithm for Continuous Global Optimization , 2000, J. Glob. Optim..

[62]  P. V. Laarhoven,et al.  A quantitative analysis of the simulated annealing algorithm: A case study for the traveling salesman problem , 1988 .

[63]  ScalingMichael W. Trosset On the Existence of Nonglobal Minimizers of the Stress Criterion for Metric Multidimensional Scaling , 1997 .