Pulmonary vascular responses to chronic hypoxia mediated by hypoxia-inducible factor 1.

Hypoxia-inducible factor 1 (HIF-1) is a master regulator of oxygen homeostasis that controls transcriptional responses to hypoxia. HIF-1 plays critical roles both during development and in response to physiologic and pathophysiologic stimuli in the adult. Here, the involvement of HIF-1 in lung pathophysiology will be discussed.

[1]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[2]  S. McKnight,et al.  Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. , 1997, Genes & development.

[3]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[4]  A. Giaccia,et al.  Hypoxia-Induced Gene Expression Occurs Solely through the Action of Hypoxia-Inducible Factor 1α (HIF-1α): Role of Cytoplasmic Trapping of HIF-2α , 2003, Molecular and Cellular Biology.

[5]  A. Rivard,et al.  Inhibition of hypoxia‐induced angiogenesis by cigarette smoke exposure: impairment of the HIF‐lalpha/VEGF pathway , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  G. Semenza,et al.  Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[7]  G. Semenza,et al.  Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. , 2005, Blood.

[8]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[9]  G. Semenza,et al.  Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. , 2003, Cancer research.

[10]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[11]  Kan Ding,et al.  Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice , 2003, Nature Genetics.

[12]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[13]  G. Semenza,et al.  Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[14]  D. Peet,et al.  Asparagine Hydroxylation of the HIF Transactivation Domain: A Hypoxic Switch , 2002, Science.

[15]  Till Acker,et al.  Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice , 2002, Nature Medicine.

[16]  P. Carmeliet,et al.  Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice , 2002, Nature Medicine.

[17]  L. Ellis,et al.  Insulin-like Growth Factor 1 Induces Hypoxia-inducible Factor 1-mediated Vascular Endothelial Growth Factor Expression, Which is Dependent on MAP Kinase and Phosphatidylinositol 3-Kinase Signaling in Colon Cancer Cells* , 2002, The Journal of Biological Chemistry.

[18]  P. Carmeliet,et al.  Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. , 2003, The Journal of clinical investigation.

[19]  G. Semenza,et al.  FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. , 2001 .

[20]  P. Hirth,et al.  Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. , 2000, The Journal of clinical investigation.

[21]  R. Tuder,et al.  Pulmonary Hypertension in Transgenic Mice Expressing a Dominant-Negative BMPRII Gene in Smooth Muscle , 2004, Circulation research.

[22]  G. Semenza,et al.  Expression of angiogenesis‐related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis , 2001, The Journal of pathology.

[23]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Kivirikko,et al.  Characterization of the Human Prolyl 4-Hydroxylases That Modify the Hypoxia-inducible Factor* , 2003, Journal of Biological Chemistry.

[25]  Kiichi Hirota,et al.  Cell Type–Specific Regulation of Angiogenic Growth Factor Gene Expression and Induction of Angiogenesis in Nonischemic Tissue by a Constitutively Active Form of Hypoxia-Inducible Factor 1 , 2003, Circulation research.

[26]  G. Semenza,et al.  Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. , 1998, The American journal of physiology.

[27]  T. Beaty,et al.  Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. , 1999, The Journal of clinical investigation.

[28]  G. Semenza,et al.  HER2 (neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression , 2001, Molecular and Cellular Biology.

[29]  D. Peet,et al.  FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. , 2002, Genes & development.