Three-dimensional hierarchical Na3Fe2(PO4)3/C with superior and fast sodium uptake for efficient hybrid capacitive deionization

[1]  M. Ye,et al.  Carbon-embedded hierarchical and dual-anion C@MoSP heterostructure for efficient capacitive deionization of saline water , 2021 .

[2]  Wang Zhang,et al.  Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization , 2021, Separation and Purification Technology.

[3]  B. Yuliarto,et al.  Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization , 2021, Journal of Materials Chemistry A.

[4]  Yubo Zhao,et al.  High-performance desalination of three-dimensional nitrogen-doped carbon framework reinforced Prussian blue in capacitive deionization , 2021 .

[5]  K. Cen,et al.  Photo-electric capacitive deionization enabled by solar-driven nano-ionics on the edges of plasma-made vertical graphenes , 2021 .

[6]  Jung-Keun Yoo,et al.  Low-cost and high-power K4[Mn2Fe](PO4)2(P2O7) as a novel cathode with outstanding cyclability for K-ion batteries , 2021 .

[7]  Xihui Zhang,et al.  Novel MoS2/NOMC electrodes with enhanced capacitive deionization performances , 2021 .

[8]  Gang Wang,et al.  Enabling superior hybrid capacitive deionization performance in NASICON-structured Na3MnTi(PO4)3/C by incorporating a two-species redox reaction , 2021 .

[9]  Qianqian Wang,et al.  3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors , 2021, Advanced Functional Materials.

[10]  Y. Yamauchi,et al.  Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors , 2021 .

[11]  Han Hu,et al.  Boosting the Pseudocapacitive and High Mass‐Loaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets , 2021, Advanced Functional Materials.

[12]  Do-Hwan Nam,et al.  Electrochemical Redox Cells Capable of Desalination and Energy Storage: Addressing Challenges of the Water–Energy Nexus , 2021 .

[13]  Gang Wang,et al.  A review of metal-organic framework-derived carbon electrode materials for capacitive deionization , 2021, New Carbon Materials.

[14]  Y. Fei,et al.  Structurally and chemically engineered graphene for capacitive deionization , 2021 .

[15]  Shangpeng Gao,et al.  Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. , 2021, ACS nano.

[16]  Haibo Li,et al.  A Brief Review on High‐Performance Capacitive Deionization Enabled by Intercalation Electrodes , 2020, Global challenges.

[17]  Xianhua Hou,et al.  Exceeding three-electron reactions in Na3+2xMn1+xTi1−x(PO4)3 NASICON cathodes with high energy density for sodium-ion batteries , 2021 .

[18]  Xiaobo Ji,et al.  Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials , 2021 .

[19]  Chaolin Li,et al.  Recent Advances in Desalination Battery: An Initial Review. , 2020, ACS applied materials & interfaces.

[20]  W. Han,et al.  Rational Design of Pillared SnS/Ti3C2Tx MXene for Superior Lithium-Ion Storage. , 2020, ACS nano.

[21]  Guofu Zhou,et al.  Faradaic Electrodes Open a New Era for Capacitive Deionization , 2020, Advanced science.

[22]  W. Ni,et al.  Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water , 2020, Journal of Materials Chemistry A.

[23]  Yuan Li,et al.  Free-standing 3D alkalized Ti3C2Tx/Ti3C2Tx nanosheet membrane electrode for highly efficient and stable desalination in hybrid capacitive deionization , 2020 .

[24]  J. Shapter,et al.  Ti3C2 MXenes-derived NaTi2(PO4)3/MXene nanohybrid for fast and efficient hybrid capacitive deionization performance , 2020 .

[25]  Gang Wang,et al.  In Situ Formation of PBAs Nanoparticles Decorated with 3D Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance. , 2020, ACS applied materials & interfaces.

[26]  Cong-jie Gao,et al.  Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals , 2020, Advanced materials.

[27]  Tao Yang,et al.  Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes , 2020 .

[28]  M. Chan-Park,et al.  Hierarchical Porous Carbon for High-Performance Capacitive Desalination of Brackish Water , 2020 .

[29]  Tao Chen,et al.  Unprecedented capacitive deionization performance of interconnected iron–nitrogen-doped carbon tubes in oxygenated saline water , 2020 .

[30]  D. Aurbach,et al.  Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements , 2020, Nature Reviews Materials.

[31]  Guodong Zhu,et al.  Inverted hybrid-capacitive deionization with polyaniline nanotubes doped activated carbon as an anode , 2020 .

[32]  Xihui Zhang,et al.  Capacitive deionization with MoS2/g-C3N4 electrodes , 2020 .

[33]  Zhian Zhang,et al.  Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries , 2020 .

[34]  Jie Ma,et al.  An All-MXene-Based Integrated Membrane Electrode Constructed using Ti3C2Tx as an Intercalating Agent for High Performance Desalination. , 2020, Environmental science & technology.

[35]  I. U. Khan,et al.  Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering , 2020 .

[36]  Xin Gao,et al.  MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization , 2020 .

[37]  Yizhou Zhu,et al.  Confined Fe2VO4⊂Nitrogen‐Doped Carbon Nanowires with Internal Void Space for High‐Rate and Ultrastable Potassium‐Ion Storage , 2019, Advanced Energy Materials.

[38]  Shou‐Heng Liu,et al.  Outstanding performance of capacitive deionization by a hierarchically porous 3D architectural graphene , 2019, Desalination.

[39]  Zhichuan J. Xu,et al.  NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries , 2019, Nano Energy.

[40]  I. M. Mohamed,et al.  Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization , 2019, Chemical Engineering Journal.

[41]  G. Wang,et al.  Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction , 2019, Environmental Science: Nano.

[42]  Ying Wang,et al.  Faradaic reactions in capacitive deionization for desalination and ion separation , 2019, Journal of Materials Chemistry A.

[43]  Gang Wang,et al.  Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal. , 2019, Environmental science & technology.

[44]  Jixiao Wang,et al.  Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process. , 2019, ACS applied materials & interfaces.

[45]  Gong Cheng,et al.  Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization , 2019, Chemical Engineering Journal.

[46]  Yusuke Yamauchi,et al.  Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination , 2019, Environmental Science: Nano.

[47]  Liang Chang,et al.  3D Channel-structured graphene as efficient electrodes for capacitive deionization. , 2019, Journal of colloid and interface science.

[48]  Xiaoming Xu,et al.  Prussian White Hierarchical Nanotubes with Surface‐Controlled Charge Storage for Sodium‐Ion Batteries , 2019, Advanced Functional Materials.

[49]  Ying Wang,et al.  Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. , 2019, Nano letters.

[50]  P. M. Biesheuvel,et al.  Exceptional Water Desalination Performance with Anion‐Selective Electrodes , 2019, Advanced materials.

[51]  Tie Gao,et al.  Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance , 2019, Desalination.

[52]  Peng Ge,et al.  Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs , 2018, Advanced materials.

[53]  Haibo Li,et al.  Mesoporous carbon derived from ZIF-8 for high efficient electrosorption , 2017, Desalination.

[54]  Lai‐Chang Zhang,et al.  Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability , 2018, Ionics.

[55]  P. M. Biesheuvel,et al.  Energy consumption in capacitive deionization - Constant current versus constant voltage operation. , 2018, Water research.

[56]  Tingting Yan,et al.  N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization , 2018 .

[57]  Chengzhong Yu,et al.  Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization , 2018 .

[58]  Jiho Lee,et al.  Battery Electrode Materials with Omnivalent Cation Storage for Fast and Charge‐Efficient Ion Removal of Asymmetric Capacitive Deionization , 2018, Advanced Functional Materials.

[59]  Tie Gao,et al.  Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity , 2018, Chemical Engineering Journal.

[60]  Zhian Zhang,et al.  Rational Architecture Design Enables Superior Na Storage in Greener NASICON‐Na4MnV(PO4)3 Cathode , 2018, Advanced Energy Materials.

[61]  Y. Hu,et al.  Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization , 2018 .

[62]  Liyi Shi,et al.  Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures , 2018 .

[63]  Y. Gogotsi,et al.  Porous Cryo-Dried MXene for Efficient Capacitive Deionization , 2018 .

[64]  Jinwen Qin,et al.  Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries , 2018 .

[65]  Karren L. More,et al.  Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization , 2018 .

[66]  V. Presser,et al.  Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation , 2018 .

[67]  Volker Presser,et al.  Water Desalination with Energy Storage Electrode Materials , 2018 .

[68]  Qian Sun,et al.  Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers , 2017 .

[69]  Fuming Chen,et al.  Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite , 2017 .

[70]  Bo Chen,et al.  Improved Reversibility of Fe3+/Fe4+ Redox Couple in Sodium Super Ion Conductor Type Na3Fe2(PO4)3 for Sodium‐Ion Batteries , 2017, Advanced materials.

[71]  Yongyao Xia,et al.  Monoclinic Phase Na3Fe2(PO4)3: Synthesis, Structure, and Electrochemical Performance as Cathode Material in Sodium-Ion Batteries , 2017 .

[72]  Zhiyu Wang,et al.  A Top‐Down Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage , 2016 .

[73]  Gang Wang,et al.  Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. , 2016, Water research.

[74]  Choonsoo Kim,et al.  Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques , 2014 .

[75]  P. M. Biesheuvel,et al.  Energy consumption and constant current operation in membrane capacitive deionization , 2012 .