Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe2O4 spinel-magnetic thin films

In this study, we mainly investigated the effects of trivalent Cr ion substitution on the properties of nickel ferrite (NCF) spinel-thin films. The as-prepared spinel thin films were characterized by thermogravimetry-differential thermal analysis (TGA-DTA) to comprehensively examine their phase transition. X-ray diffraction (XRD) analysis revealed that the prepared films have a single-phase face-centered cubic crystal structure. A Raman study confirmed the arrangement of the inverse-cubic spinel structure of these spinel-thin films. Field-emission scanning electron microscopy (FE-SEM) images verified the slight agglomeration of particles. Similarly, transmission electron microscopy (TEM) images together with selected area electron diffraction (SAED) patterns supported the XRD results. PL spectra showed enhanced near band emission (NBE) intensity due to the passivation of oxygen vacancies by Cr3+ substitution. The DC electrical resistivity (ρ) increases from 1.4 × 10−6 Ω cm to 4.42 × 10−6 Ω cm at room temperature. Dielectric parameters were studied as a function of frequency in the range of 1–10 MHz at 300 K, and these parameters decreased with the increasing Cr3+ ion concentration in the spinel-thin films. The obtained results indicate the applicability of the fabricated thin films in high-frequency electronic devices.

[1]  Prashant B. Kharat,et al.  Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: Enhancement via hydrophobic-to-hydrophilic surface transformation , 2020 .

[2]  Bingbing Wang,et al.  Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement , 2020 .

[3]  Prashant B. Kharat,et al.  Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites , 2020, Ceramics International.

[4]  Sandeep B. Somvanshi,et al.  Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B , 2020, Journal of Materials Science: Materials in Electronics.

[5]  Prashant B. Kharat,et al.  Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19 , 2020 .

[6]  Prashant B. Kharat,et al.  Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): Thermal, structural, spectral, optical and physisorption analysis , 2020 .

[7]  Sandeep B. Somvanshi,et al.  Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles , 2020 .

[8]  Bingbing Wang,et al.  Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. , 2020, Journal of colloid and interface science.

[9]  Prashant B. Kharat,et al.  Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications , 2020 .

[10]  Sandeep B. Somvanshi,et al.  Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films , 2020, Optik.

[11]  J. Baumberg,et al.  Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures , 2020, Scientific Reports.

[12]  Sandeep B. Somvanshi,et al.  Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones , 2020, Materials Research Express.

[13]  Binghui Xu,et al.  Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption , 2019 .

[14]  Chuanhui Zhang,et al.  Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance , 2019 .

[15]  K. M. Jadhav,et al.  Impact of trivalent metal ion substitution on structural, optical, magnetic and dielectric properties of Li0.5Fe2.5O4 thin films , 2019, Physica B: Condensed Matter.

[16]  Sandeep B. Somvanshi,et al.  Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications , 2019, DAE SOLID STATE PHYSICS SYMPOSIUM 2018.

[17]  Zhenguo Gao,et al.  Tunable microwave absorbing property of LaxFeO3/C by introducing A-site cation deficiency , 2019, Journal of Materials Science: Materials in Electronics.

[18]  K. M. Jadhav,et al.  Influence of Cr3+ substitution on structural, morphological, optical, and magnetic properties of nickel ferrite thin films , 2019, Applied Physics A.

[19]  K. M. Jadhav,et al.  Impact of Trivalent Metal Ion Doping on Structural, Photoluminescence and Electric Properties of NiFe2O4 Thin Films , 2019, Journal of Electronic Materials.

[20]  Prashant B. Kharat,et al.  Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method , 2019, Journal of Materials Science: Materials in Electronics.

[21]  K. M. Jadhav,et al.  Cu2+substituted NiFe2O4 thin films via spray pyrolysis technique and their high-frequency devices application , 2018, Journal of Alloys and Compounds.

[22]  Sandeep B. Somvanshi,et al.  Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application , 2018 .

[23]  Prashant B. Kharat,et al.  Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids , 2018 .

[24]  K. Samatha,et al.  Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite , 2018 .

[25]  S. D. Birajdar,et al.  Structural, morphological, optical, magnetic and electrical properties of Al 3+ substituted nickel ferrite thin films , 2018 .

[26]  Xiaojun Wu,et al.  Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis , 2018 .

[27]  Yonghong Cheng,et al.  Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior , 2018 .

[28]  D. Bao,et al.  Improved unipolar resistive switching characteristics of Au-doped nickel ferrite magnetic thin films for nonvolatile memory applications , 2018 .

[29]  V. Nagarajan,et al.  Spray deposited MnFe 2 O 4 thin films for detection of ethanol and acetone vapors , 2018 .

[30]  Stefan Sredojevic,et al.  Electrical, dielectric and structural characterization of nickel ferrite films for thin film electronic applications , 2017, 2017 IEEE East-West Design & Test Symposium (EWDTS).

[31]  K. M. Jadhav,et al.  Electrical resistivity and Mössbauer studies of Cr substituted Co nano ferrites , 2017 .

[32]  D. Phase,et al.  The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films , 2017 .

[33]  P. Rao,et al.  Chlorine gas sensing performance of palladium doped nickel ferrite thin films , 2016 .

[34]  T. S. Natarajan,et al.  The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers , 2015 .

[35]  Lu Lu,et al.  Ultra-low temperature epitaxial growth of lithium ferrite thin films by high-pressure sputtering , 2015 .

[36]  R. C. Alange,et al.  Electrical and Dielectrical Properties of Low-Temperature-Synthesized Nanocrystalline Mg2+-Substituted Cobalt Spinel Ferrite , 2015 .

[37]  P. Vlăzan,et al.  Cobalt ferrite substituted with Mn: Synthesis method, characterization and magnetic properties , 2015 .

[38]  Run‐Wei Li,et al.  Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. , 2015, ACS nano.

[39]  C. Ramana,et al.  Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite , 2014 .

[40]  H. Yadav,et al.  One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications , 2014 .

[41]  J. Vijaya,et al.  Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method , 2014 .

[42]  J. Vijaya,et al.  Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method , 2013 .

[43]  E. Pervaiz,et al.  Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites , 2013 .

[44]  M. Seehra,et al.  Effect of α-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles , 2013 .

[45]  S. M. Rathod,et al.  Influence of Zn2+ doping on the structural and surface morphological properties of nanocrystalline Ni-Cu spinel ferrite , 2013, International Nano Letters.

[46]  J. Zavickis,et al.  Ethanol monitoring by ZnFe2O4 thin film obtained by spray pyrolysis , 2013 .

[47]  J. Zavickis,et al.  Properties of Ni–Zn ferrite thin films deposited using spray pyrolysis , 2012 .

[48]  V. Cabuil,et al.  Synthesis of cobalt ferrite nanoparticles in continuous-flow microreactors , 2012 .

[49]  Wei Hu,et al.  Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. , 2012, Journal of the American Chemical Society.

[50]  P. P. Hankare,et al.  Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite , 2012 .

[51]  A. Rezakhani,et al.  Structural, Magnetic, and Optical Properties of Zinc- and Copper-Substituted Nickel Ferrite Nanocrystals , 2012, Journal of Superconductivity and Novel Magnetism.

[52]  A. Ahlawat,et al.  Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power , 2011 .

[53]  P. Patil,et al.  Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method , 2011 .

[54]  M. Anis-Ur-Rehman,et al.  Structural and dielectric properties of Cr-doped Ni–Zn nanoferrites , 2011 .

[55]  N. Kulkarni,et al.  Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by chemical method , 2011 .

[56]  Hongming Yuan,et al.  Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles , 2010 .

[57]  A. K. Subramani,et al.  Spinel ferrite films by a novel solution process for high frequency applications , 2010 .

[58]  Guoli Fan,et al.  Template-assisted fabrication of macroporous NiFe2O4 films with tunable microstructural, magnetic and interfacial properties , 2010 .

[59]  M. Gabal,et al.  Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite , 2009 .

[60]  K. M. Jadhav,et al.  Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite , 2009 .

[61]  C. Lokhande,et al.  Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets , 2008 .

[62]  A. Maqsood,et al.  ELECTRICAL AND MAGNETIC CHARACTERIZATION OF NANO CRYSTALLINE NI-ZN FERRITE SYNTHESIZED BY CO-PRECIPITATION ROUTE , 2008 .

[63]  S. Fu,et al.  Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route , 2007 .

[64]  R. Juang,et al.  An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions , 2007 .

[65]  Mahavir Singh,et al.  Study of dielectric behaviour of Mn-Zn nano ferrites , 2007 .

[66]  A. Fert,et al.  NiFe2O4: A Versatile Spinel Material Brings New Opportunities for Spintronics , 2006 .

[67]  N. Venkataramani,et al.  Large room temperature magnetization in nanocrystalline zinc ferrite thin films , 2006 .

[68]  Y. Nuli,et al.  Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries , 2005 .

[69]  S. M. Attia,et al.  AC conductivity and dielectric behavior of CoAlxFe2−xO4 , 2004 .

[70]  Akio Suzuki,et al.  Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition , 2003 .

[71]  Jianzhong Gu,et al.  Preparation and gas-sensing characteristics of nanocrystalline spinel zinc ferrite thin films , 2003 .

[72]  S. Kaneko,et al.  Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions , 2001 .

[73]  G. Hu,et al.  Structural tuning of the magnetic behavior in spinel-structure ferrite thin films , 2000 .

[74]  Matthew T. Johnson,et al.  Growth of nickel ferrite thin films using pulsed-laser deposition , 1999 .

[75]  J. Deschanvres,et al.  New spray pyrolysis deposition and magnetic properties of ferrite thin films for microwave applications , 1990 .