Deterministic Shaping and Reshaping of Single-Photon Temporal Wave Functions.

Thorough control of the optical mode of a single photon is essential for quantum information applications. We present a comprehensive experimental and theoretical study of a light-matter interface based on cavity quantum electrodynamics. We identify key parameters like the phases of the involved light fields and demonstrate absolute, flexible, and accurate control of the time-dependent complex-valued wave function of a single photon over several orders of magnitude. This capability will be an important tool for the development of distributed quantum systems with multiple components that interact via photons.

[1]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. I. Cavity model , 2006, quant-ph/0612082.

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  Andreas Wallraff,et al.  Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons , 2018 .

[4]  Jianming Wen,et al.  Optimal storage and retrieval of single-photon waveforms. , 2012, Optics express.

[5]  L. Childress,et al.  Shaping quantum pulses of light via coherent atomic memory , 2004 .

[6]  Gerd Leuchs,et al.  Temporal shaping of single photons enabled by entanglement , 2016, 1610.03794.

[7]  H M Wiseman,et al.  Quantum optical waveform conversion. , 2010, Physical review letters.

[8]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.

[9]  S. Ritter,et al.  Optimal storage of a single photon by a single intra-cavity atom , 2018, New Journal of Physics.

[10]  G. Rempe,et al.  Generation of single photons from an atom-cavity system , 2013, 1302.2897.

[11]  G. Leuchs,et al.  Generic method for lossless generation of arbitrarily shaped photons , 2017 .

[12]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[13]  S. Gasparinetti,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[14]  A. Kuhn,et al.  Photonic qubits, qutrits and ququads accurately prepared and delivered on demand , 2012, 1203.5614.

[15]  Nobuyuki Matsuda,et al.  Deterministic reshaping of single-photon spectra using cross-phase modulation , 2016, Science Advances.

[16]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[17]  A. Kuhn,et al.  Highly Efficient Source for Indistinguishable Photons of Controlled Shape , 2018 .

[18]  Colin J. McKinstrie,et al.  Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing , 2012 .

[19]  Michael G. Raymer,et al.  Manipulating the color and shape of single photons , 2012 .

[20]  Olivier Morin,et al.  Experimentally accessing the optimal temporal mode of traveling quantum light states. , 2013, Physical review letters.

[21]  M. Lukin,et al.  Electromagnetically induced transparency with tunable single-photon pulses , 2005, Nature.

[23]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[24]  A. I. Lvovsky,et al.  Complete temporal characterization of a single photon , 2014, Light: Science & Applications.

[25]  H. J. Kimble,et al.  Deterministic generation of a bit-stream of single-photon pulses , 1997 .

[26]  Brian J. Smith,et al.  Bandwidth manipulation of quantum light by an electro-optic time lens , 2016, Nature Photonics.

[27]  N. Sangouard,et al.  Generation of single photons with highly tunable wave shape from a cold atomic ensemble , 2016, Nature Communications.

[28]  Axel Kuhn,et al.  Controlled generation of single photons from a strongly coupled atom-cavity system , 1999 .

[29]  Axel Kuhn,et al.  Highly efficient source for indistinguishable single photons of controlled shape , 2011, 1106.6292.

[30]  S. Yelin,et al.  How to trap photons? Storing single-photon quantum states in collective atomic excitations , 1999, quant-ph/9912022.

[31]  G. Rempe,et al.  Decoherence-protected memory for a single-photon qubit , 2017, Nature Photonics.

[32]  G. Rempe,et al.  Shaping the Phase of a Single Photon , 2009, 0905.4583.

[33]  K. Fisher,et al.  Quantum optical signal processing in diamond , 2015, 1509.05098.

[34]  Optimal photons for quantum-information processing , 2005, quant-ph/0505139.

[35]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[36]  Wolfgang Porod,et al.  Roadmap on all-optical processing , 2019, Journal of Optics.

[37]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[38]  S. Harris,et al.  Generation of paired photons with controllable waveforms. , 2005, Physical review letters.

[39]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[40]  Axel Kuhn,et al.  Single-photon absorption in coupled atom-cavity systems , 2011, 1105.1699.