Generalized shifted Chebyshev polynomials for fractional optimal control problems

Abstract The generalized shifted Chebyshev polynomials (GSCP) represent a novel class of basis functions that include free coefficients and control parameters. The GSCP are adopted to solve a class of fractional optimal control problems (FOCP). The corresponding operational matrices of derivatives are calculated for expanding the solution of the problem in terms of the GSCP. Numerical examples show the good performance of the algorithm.

[1]  Harendra Singh,et al.  Stable Numerical Approach for Fractional Delay Differential Equations , 2017 .

[2]  J. A. Tenreiro Machado,et al.  On the formulation and numerical simulation of distributed-order fractional optimal control problems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[3]  Mohammad Hossein Heydari,et al.  A computational method for solving variable-order fractional nonlinear diffusion-wave equation , 2019, Appl. Math. Comput..

[4]  Carlo Cattani,et al.  Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[5]  Mehdi Dehghan,et al.  Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule , 2013, J. Comput. Appl. Math..

[6]  Sohrab Effati,et al.  A Neural Network Approach for Solving a Class of Fractional Optimal Control Problems , 2017, Neural Processing Letters.

[7]  N. Apreutesei An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System , 2010 .

[8]  M. Ramadan,et al.  An exponential Chebyshev second kind approximation for solving high-order ordinary differential equations in unbounded domains, with application to Dawson's integral , 2017 .

[9]  Farideh Ghoreishi,et al.  An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis , 2011, Comput. Math. Appl..

[10]  Seyed Mohammad Hosseini,et al.  A Pseudospectral Method for Fractional Optimal Control Problems , 2017, J. Optim. Theory Appl..

[11]  Saeed Kazem,et al.  Fractional-order Legendre functions for solving fractional-order differential equations , 2013 .

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  Rein Luus,et al.  Optimal control of time-delay systems by dynamic programming , 1992 .

[14]  D. Baleanu,et al.  A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems , 2017 .

[15]  Hammad Khalil,et al.  A generalized scheme based on shifted Jacobi polynomials for numerical simulation of coupled systems of multi-term fractional-order partial differential equations , 2017 .

[16]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[17]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[18]  M. Khader On the numerical solutions for the fractional diffusion equation , 2011 .

[19]  M. Zaky A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations , 2018 .

[20]  Hari M. Srivastava,et al.  The Müntz-Legendre Tau method for fractional differential equations , 2016 .

[21]  Delfim F. M. Torres,et al.  A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems , 2016, J. Optim. Theory Appl..

[22]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[23]  Mahmoud Behroozifar,et al.  A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials , 2018 .

[24]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[25]  H. Hassani,et al.  A new optimization method for a class of time fractional convection-diffusion-wave equations with variable coefficients , 2017 .

[26]  Amin Jajarmi,et al.  An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay , 2016 .

[27]  E. Babolian,et al.  The Boubaker polynomials and their application to solve fractional optimal control problems , 2017 .

[28]  Qingqu Zhuang,et al.  Direct Solvers for the Biharmonic Eigenvalue Problems Using Legendre Polynomials , 2017, J. Sci. Comput..

[29]  José António Tenreiro Machado,et al.  Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation , 2017, J. Optim. Theory Appl..

[30]  Ali Lotfi,et al.  A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems , 2017, J. Optim. Theory Appl..

[31]  R. Kezerashvili,et al.  Trion and Biexciton in Monolayer Transition Metal Dichalcogenides , 2017, 1701.01686.

[32]  Syed Tauseef Mohyud-Din,et al.  A fractional-order Legendre collocation method for solving the Bagley-Torvik equations , 2016, Advances in Difference Equations.

[33]  Muthukumar Palanisamy,et al.  Numerical solution of fractional delay differential equation by shifted Jacobi polynomials , 2017, Int. J. Comput. Math..

[34]  S. Yousefi,et al.  A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method , 2016 .

[35]  Dumitru Baleanu,et al.  A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems , 2017 .

[36]  A. Alizadeh,et al.  Numerical Schemes for Fractional Optimal Control Problems , 2017 .

[37]  Saudi Arabia,et al.  AN ACCURATE NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS , 2015 .

[38]  Sohrab Ali Yousefi,et al.  An Efficient Numerical Solution of Fractional Optimal Control Problems by using the Ritz Method and Bernstein Operational Matrix , 2016 .

[39]  K. Ivaz,et al.  Approximate solution of dual integral equations using Chebyshev polynomials , 2017, Int. J. Comput. Math..

[40]  Navid Razmjooy,et al.  Analytical Solution for Optimal Control by the Second Kind Chebyshev Polynomials Expansion , 2017 .