Improved Bounds on the Union Complexity of Fat Objects

Abstract We introduce a new class of fat, not necessarily convex or polygonal, objects in the plane, namely locally γ-fat objects. We prove that the union complexity of any set of n such objects is O(λs+2(n)log 2n). This improves the best known bound, and extends it to a more general class of objects.

[1]  Micha Sharir,et al.  The Union of Congruent Cubes in Three Dimensions , 2003, Discret. Comput. Geom..

[2]  Mark de Berg,et al.  Realistic Input Models for Geometric Algorithms , 2002, Algorithmica.

[3]  Alon Efrat The Complexity of the Union of (alpha, beta)-Covered Objects , 2005, SIAM J. Comput..

[4]  Micha Sharir,et al.  On the complexity of the union of fat objects in the plane , 1997, SCG '97.

[5]  Micha Sharir,et al.  On the Union of κ-Round Objects in Three and Four Dimensions , 2004, Discret. Comput. Geom..

[6]  Mark H. Overmars,et al.  The Complexity of the Free Space for a Robot Moving Amidst Fat Obstacles , 1992, Comput. Geom..

[7]  Mark H. Overmars,et al.  Motion planning amidst fat obstacles (extended abstract) , 1994, SCG '94.

[8]  Micha Sharir,et al.  On the Union of Fat Wedges and Separating a Collection of Segments By a Line , 1993, Comput. Geom..

[9]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[10]  Micha Sharir,et al.  Efficient Hidden Surface Removal for Objects with Small Union Size , 1992, Comput. Geom..

[11]  János Pach,et al.  On the Boundary Complexity of the Union of Fat Triangles , 2002, SIAM J. Comput..

[12]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[13]  Kurt Mehlhorn,et al.  Approximate motion planning and the complexity of the boundary of the union of simple geometric figures , 2005, Algorithmica.

[14]  Micha Sharir,et al.  On the union of κ-round objects , 2004, SCG '04.

[15]  Micha Sharir,et al.  Computing Depth Orders for Fat Objects and Related Problems , 1995, Comput. Geom..

[16]  Matthew J. Kaltz 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects , 1997 .

[17]  Michael T. Goodrich,et al.  Balanced aspect ratio trees: combining the advantages of k-d trees and octrees , 1999, SODA '99.

[18]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .

[19]  Marc J. van Kreveld On fat partitioning, fat covering and the union size of polygons , 1998, Comput. Geom..

[20]  Mark de Berg Vertical ray shooting for fat objects , 2005, Symposium on Computational Geometry.

[21]  Mark de Berg,et al.  Vertical ray shooting and computing depth orders for fat objects , 2006, SODA 2006.

[22]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[23]  Matthew J. Katz,et al.  On the union of κ-curved objects , 1998, SCG '98.

[24]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.