Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region
暂无分享,去创建一个
R. Menezes | E. Sampaio | E. Dutra | E. S. Santos Júnior | A. Sales | Paulo Rotella Junior | Jéssica B. S. da Silva | João Gabriel Távora Pedrosa | Edvaldo Pereira Santos Júnior | J. B. da Silva
[1] J. A. Zavala-Hurtado,et al. Evolution under domestication of correlated traits in two edible columnar cacti in Mexico , 2022, Evolutionary Ecology.
[2] A. Patel,et al. Assessing economic feasibility of bio-energy feedstock cultivation on marginal lands , 2021, Biomass and Bioenergy.
[3] J. Cushman,et al. Five‐year field trial of the biomass productivity and water input response of cactus pear (Opuntia spp.) as a bioenergy feedstock for arid lands , 2021 .
[4] A. B. Rao,et al. Life cycle energy-carbon-water footprints of sugar, ethanol and electricity from sugarcane. , 2021, Bioresource technology.
[5] J. Dubeux,et al. Cactus (Opuntia and Nopalea) nutritive value: A review , 2021 .
[6] Â. Vian,et al. Produção de Energia , 2021 .
[7] Ignacio Macedo,et al. Rice-pasture agroecosystem intensification affects energy use efficiency , 2021 .
[8] B. Patel,et al. Cultivation of bioenergy crops in Gujarat state: a consultative survey process to understand the current practices of landowners , 2020, Environment, Development and Sustainability.
[9] A. Taner,et al. Comparison of energy of planting methods in wheat production in a semi-arid region , 2020, Archives of Agronomy and Soil Science.
[10] Yi Song,et al. Life Cycle Assessment and Economic Analysis of Biomass Energy Technology in China: A Brief Review , 2020 .
[11] P. Bórawski,et al. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment , 2020 .
[12] Cleyton de Almeida Araújo,et al. Análise descritiva do custo de implantação de palma forrageira em plantio de sequeiro no Semiárido alagoano: Um estudo de caso , 2020 .
[13] Paolo Maria Congedo,et al. A novel energy-economic-environmental multi-criteria decision-making in the optimization of a hybrid renewable system , 2020 .
[14] O. Grace,et al. Succulent plant diversity as natural capital , 2019, PLANTS, PEOPLE, PLANET.
[15] H. Chum,et al. Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat , 2019, Renewable and Sustainable Energy Reviews.
[16] Nancy Medina-Herrera,et al. Evaluation of the Use of Energy in the Production of Sweet Sorghum (Sorghum Bicolor (L.) Moench) under Different Production Systems , 2019, Energies.
[17] David Ferreira Lopes Santos,et al. ANÁLISE ECONÔMICA DA PRODUÇÃO DE CANA-DE-AÇÚCAR EM DIFERENTES PACOTES TECNOLÓGICOS , 2018, Revista Estudo & Debate.
[18] M. Quintero-Angel,et al. Tendencies and challenges for the assessment of agricultural sustainability , 2018 .
[19] R. Menezes,et al. Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. , 2018, Bioresource technology.
[20] G. F. D. C. Lima,et al. Viabilidade econômica da produção de palma forrageira irrigada e adensada no semiárido Potiguar , 2017 .
[21] Anton Finenko,et al. Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS , 2016 .
[22] S. Shamshirband,et al. Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks , 2016 .
[23] F. Sgroi,et al. Giant reed as energy crop for Southern Italy: An economic feasibility study , 2016 .
[24] R. Menezes,et al. Potential for biofuels from the biomass of prickly pear cladodes: Challenges for bioethanol and biogas production in dry areas , 2016 .
[25] Xiaohan Yang,et al. Development and use of bioenergy feedstocks for semi-arid and arid lands. , 2015, Journal of experimental botany.
[26] Filippo Sgroi,et al. Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy , 2015 .
[27] K. Jankowski,et al. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland , 2015 .
[28] Laerte Marques da Silva,et al. Produtividade da palma forrageira cultivada em diferentes densidades de plantio , 2014 .
[29] Filippo Sgroi,et al. Economic evaluation of introduction of poplar as biomass crop in Italy , 2014 .
[30] S. Rahman,et al. Energy productivity and efficiency of wheat farming in Bangladesh , 2014 .
[31] Sanderine Nonhebel,et al. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran , 2014 .
[32] Maurício Luiz de Mello Vieira Leite,et al. Caracterização técnica dos sistemas de produção de palma forrageira em Soledade, PB , 2014 .
[33] Thomas Knoke,et al. Economic evaluation of short rotation coppice systems for energy from biomass—A review , 2014 .
[34] Shahin Rafiee,et al. Energy and economic assessment of prune production in Tehran province of Iran , 2013 .
[35] H. Feizi,et al. Which crop production system is more efficient in energy use: wheat or barley? , 2013, Environment, Development and Sustainability.
[36] G. Xie,et al. Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land , 2012 .
[37] A. H. D. N. Rangel,et al. A PALMA FORRAGEIRA: ALTERNATIVA PARA O SEMI-ÁRIDO , 2011 .
[38] Héctor de las Cuevas Milán,et al. Costo energético del rodillo de cuchillas CEMA 1400 para cobertura vegetal , 2011 .
[39] C. Lacasta,et al. Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial , 2011 .
[40] S. Rafiee,et al. Modeling and sensitivity analysis of energy inputs for apple production in Iran , 2010 .
[41] Flávio Hiroshi Kaneko,et al. ANÁLISE ECONÔMICA DA PRODUÇÃO DE CANA-DE-AÇÚCAR CONSIDERANDO-SE A TERCEIRIZAÇÃO DAS OPERAÇÕES AGRÍCOLAS: O CASO DE UM PRODUTOR , 2009 .
[42] M. G. Varnamkhasti,et al. Comparison of energy of tillage systems in wheat production , 2009 .
[43] D. A. Salla. Análise energética de sistemas de produção de etanol de mandica,cana-de-açúcar e milho , 2008 .
[44] David Styles,et al. Energy crops in Ireland: an economic comparison of willow and Miscanthus production with conventional farming systems. , 2008 .
[45] Ahmad Tabatabaeefar,et al. Energy Analysis of Sugarcane Production in Plant Farms A Case Study in Debel Khazai Agro-industry in Iran , 2008 .
[46] Raimundo Pinheiro Neto,et al. Balanço energético do sistema de produção de soja e milho em uma - DOI: 10.4025/actasciagron.v29i2.233 , 2007 .
[47] M. Meul,et al. Energy use efficiency of specialised dairy, arable and pig farms in Flanders , 2007 .
[48] Yelena Sánchez Rodríguez,et al. Costo energético de la cosecha mecanizada del arroz en Cuba , 2006 .
[49] Burhan Ozkan,et al. An econometric analysis of energy input-output in Turkish agriculture , 2005 .
[50] M. Acaroğlu,et al. The cultivation and energy balance of Miscanthus×giganteus production in Turkey , 2005 .
[51] İbrahim Yilmaz,et al. An analysis of energy use and input costs for cotton production in Turkey , 2005 .
[52] E. P. Pacheco. Seleção e custo operacional de máquinas agrícolas. , 2003 .
[53] Christian Bockstaller,et al. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator , 2002 .
[54] Haroldo Carlos Fernandes,et al. Comparación de cuatro sistemas de labranza/siembra en relación con su costo energético , 2002 .
[55] Thomas Jungbluth,et al. Energy and biomass engineering , 1999 .
[56] H. Schroll,et al. Energy-flow and ecological sustainability in Danish agriculture , 1994 .
[57] Richard C. Fluck,et al. Energy sequestered in repairs and maintenance of agricultural machinery , 1984 .
[58] D. Pimentel,et al. Food Production and the Energy Crisis , 1973, Science.