Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region

The Brazilian semi-arid region is marked by a variable spatial-temporal rainfall distribution, concentrated over a 3 to 4 month season. Limited water availability is the main obstacle to the production of forage plants of C3 metabolism (such as corn and soybeans) and C4 metabolism (such as sugarcane), as well as livestock. To mitigate this forage supply, the spineless cactus (SC) has been cultivated in the region, producing high biomass amounts in this harsh environment. Recently, this remarkable capacity to produce biomass has drawn the attention of the renewable energy sector, supported by recent studies demonstrating the feasibility of its biomass as a raw material for bioenergy production. However, before moving to commercial scale, it is necessary to demonstrate that large-scale production has energy and economic viability for clean energy investors. Thus, the objective of this article was to analyze the energetic and economic viability of forage cactus cultivation systems in the Brazilian semi-arid region. The data used were extracted from the literature, based on forage production. For the energy evaluation, the energy balance was performed and the energy efficiency, energy productivity, specific energy, and net energy metrics were applied. The financial feasibility analysis used the Net Present Value (NPV) and Internal Rate of Return (IRR). The energy balance revealed that the SC cultivation is viable for biomass commercial-scale production, with an energy efficiency of 3.36, an energy productivity of 0.25 kg MJ−1, a specific energy of 13.5 MJ kg−1, and an energy balance of 127,348 MJ ha−1. For the economic aspect, considering an attractive minimum rate of return of 8%, production also proved to be viable, in a time horizon of three years. The Net Present Value and IRR metrics were USD 2196 and the IRR was 46%, respectively. The results found are important to encourage new investments in rural properties in the semi-arid region, and cultivation in new areas proved to be an efficient alternative from an energy and economic point of view, in addition to collaborating for the energy transition to sustainable sources and in the mitigation of regional environmental impacts.

[1]  J. A. Zavala-Hurtado,et al.  Evolution under domestication of correlated traits in two edible columnar cacti in Mexico , 2022, Evolutionary Ecology.

[2]  A. Patel,et al.  Assessing economic feasibility of bio-energy feedstock cultivation on marginal lands , 2021, Biomass and Bioenergy.

[3]  J. Cushman,et al.  Five‐year field trial of the biomass productivity and water input response of cactus pear (Opuntia spp.) as a bioenergy feedstock for arid lands , 2021 .

[4]  A. B. Rao,et al.  Life cycle energy-carbon-water footprints of sugar, ethanol and electricity from sugarcane. , 2021, Bioresource technology.

[5]  J. Dubeux,et al.  Cactus (Opuntia and Nopalea) nutritive value: A review , 2021 .

[6]  Â. Vian,et al.  Produção de Energia , 2021 .

[7]  Ignacio Macedo,et al.  Rice-pasture agroecosystem intensification affects energy use efficiency , 2021 .

[8]  B. Patel,et al.  Cultivation of bioenergy crops in Gujarat state: a consultative survey process to understand the current practices of landowners , 2020, Environment, Development and Sustainability.

[9]  A. Taner,et al.  Comparison of energy of planting methods in wheat production in a semi-arid region , 2020, Archives of Agronomy and Soil Science.

[10]  Yi Song,et al.  Life Cycle Assessment and Economic Analysis of Biomass Energy Technology in China: A Brief Review , 2020 .

[11]  P. Bórawski,et al.  Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment , 2020 .

[12]  Cleyton de Almeida Araújo,et al.  Análise descritiva do custo de implantação de palma forrageira em plantio de sequeiro no Semiárido alagoano: Um estudo de caso , 2020 .

[13]  Paolo Maria Congedo,et al.  A novel energy-economic-environmental multi-criteria decision-making in the optimization of a hybrid renewable system , 2020 .

[14]  O. Grace,et al.  Succulent plant diversity as natural capital , 2019, PLANTS, PEOPLE, PLANET.

[15]  H. Chum,et al.  Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat , 2019, Renewable and Sustainable Energy Reviews.

[16]  Nancy Medina-Herrera,et al.  Evaluation of the Use of Energy in the Production of Sweet Sorghum (Sorghum Bicolor (L.) Moench) under Different Production Systems , 2019, Energies.

[17]  David Ferreira Lopes Santos,et al.  ANÁLISE ECONÔMICA DA PRODUÇÃO DE CANA-DE-AÇÚCAR EM DIFERENTES PACOTES TECNOLÓGICOS , 2018, Revista Estudo & Debate.

[18]  M. Quintero-Angel,et al.  Tendencies and challenges for the assessment of agricultural sustainability , 2018 .

[19]  R. Menezes,et al.  Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. , 2018, Bioresource technology.

[20]  G. F. D. C. Lima,et al.  Viabilidade econômica da produção de palma forrageira irrigada e adensada no semiárido Potiguar , 2017 .

[21]  Anton Finenko,et al.  Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS , 2016 .

[22]  S. Shamshirband,et al.  Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks , 2016 .

[23]  F. Sgroi,et al.  Giant reed as energy crop for Southern Italy: An economic feasibility study , 2016 .

[24]  R. Menezes,et al.  Potential for biofuels from the biomass of prickly pear cladodes: Challenges for bioethanol and biogas production in dry areas , 2016 .

[25]  Xiaohan Yang,et al.  Development and use of bioenergy feedstocks for semi-arid and arid lands. , 2015, Journal of experimental botany.

[26]  Filippo Sgroi,et al.  Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy , 2015 .

[27]  K. Jankowski,et al.  An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland , 2015 .

[28]  Laerte Marques da Silva,et al.  Produtividade da palma forrageira cultivada em diferentes densidades de plantio , 2014 .

[29]  Filippo Sgroi,et al.  Economic evaluation of introduction of poplar as biomass crop in Italy , 2014 .

[30]  S. Rahman,et al.  Energy productivity and efficiency of wheat farming in Bangladesh , 2014 .

[31]  Sanderine Nonhebel,et al.  Energy use efficiency and greenhouse gas emissions of farming systems in north Iran , 2014 .

[32]  Maurício Luiz de Mello Vieira Leite,et al.  Caracterização técnica dos sistemas de produção de palma forrageira em Soledade, PB , 2014 .

[33]  Thomas Knoke,et al.  Economic evaluation of short rotation coppice systems for energy from biomass—A review , 2014 .

[34]  Shahin Rafiee,et al.  Energy and economic assessment of prune production in Tehran province of Iran , 2013 .

[35]  H. Feizi,et al.  Which crop production system is more efficient in energy use: wheat or barley? , 2013, Environment, Development and Sustainability.

[36]  G. Xie,et al.  Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land , 2012 .

[37]  A. H. D. N. Rangel,et al.  A PALMA FORRAGEIRA: ALTERNATIVA PARA O SEMI-ÁRIDO , 2011 .

[38]  Héctor de las Cuevas Milán,et al.  Costo energético del rodillo de cuchillas CEMA 1400 para cobertura vegetal , 2011 .

[39]  C. Lacasta,et al.  Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial , 2011 .

[40]  S. Rafiee,et al.  Modeling and sensitivity analysis of energy inputs for apple production in Iran , 2010 .

[41]  Flávio Hiroshi Kaneko,et al.  ANÁLISE ECONÔMICA DA PRODUÇÃO DE CANA-DE-AÇÚCAR CONSIDERANDO-SE A TERCEIRIZAÇÃO DAS OPERAÇÕES AGRÍCOLAS: O CASO DE UM PRODUTOR , 2009 .

[42]  M. G. Varnamkhasti,et al.  Comparison of energy of tillage systems in wheat production , 2009 .

[43]  D. A. Salla Análise energética de sistemas de produção de etanol de mandica,cana-de-açúcar e milho , 2008 .

[44]  David Styles,et al.  Energy crops in Ireland: an economic comparison of willow and Miscanthus production with conventional farming systems. , 2008 .

[45]  Ahmad Tabatabaeefar,et al.  Energy Analysis of Sugarcane Production in Plant Farms A Case Study in Debel Khazai Agro-industry in Iran , 2008 .

[46]  Raimundo Pinheiro Neto,et al.  Balanço energético do sistema de produção de soja e milho em uma - DOI: 10.4025/actasciagron.v29i2.233 , 2007 .

[47]  M. Meul,et al.  Energy use efficiency of specialised dairy, arable and pig farms in Flanders , 2007 .

[48]  Yelena Sánchez Rodríguez,et al.  Costo energético de la cosecha mecanizada del arroz en Cuba , 2006 .

[49]  Burhan Ozkan,et al.  An econometric analysis of energy input-output in Turkish agriculture , 2005 .

[50]  M. Acaroğlu,et al.  The cultivation and energy balance of Miscanthus×giganteus production in Turkey , 2005 .

[51]  İbrahim Yilmaz,et al.  An analysis of energy use and input costs for cotton production in Turkey , 2005 .

[52]  E. P. Pacheco Seleção e custo operacional de máquinas agrícolas. , 2003 .

[53]  Christian Bockstaller,et al.  Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator , 2002 .

[54]  Haroldo Carlos Fernandes,et al.  Comparación de cuatro sistemas de labranza/siembra en relación con su costo energético , 2002 .

[55]  Thomas Jungbluth,et al.  Energy and biomass engineering , 1999 .

[56]  H. Schroll,et al.  Energy-flow and ecological sustainability in Danish agriculture , 1994 .

[57]  Richard C. Fluck,et al.  Energy sequestered in repairs and maintenance of agricultural machinery , 1984 .

[58]  D. Pimentel,et al.  Food Production and the Energy Crisis , 1973, Science.