The Gaia-ESO Survey: evidence of atomic diffusion in M67?

Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open clusterM67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in subgiant branch stars, the initial surface abundances are restored.We found themeasured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods. © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.

[1]  D. A. García-Hernández,et al.  Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67 , 2018, 1803.04461.

[2]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[3]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[4]  T. Nordlander,et al.  Non-LTE aluminium abundances in late-type stars , 2017, 1708.01949.

[5]  P. Cargile,et al.  The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging , 2017, 1704.03465.

[6]  H. Rix,et al.  Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin , 2017, 1701.07829.

[7]  Ulrich Bastian,et al.  Hot Stuff for One Year (HSOY) - A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL , 2017, 1701.02629.

[8]  E. Grebel,et al.  Observing the products of stellar evolution in the old open cluster M67 with APOGEE , 2017, 1701.00979.

[9]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON , 2016, 1610.05888.

[10]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. II. NEUTRAL MAGNESIUM , 2016, 1610.05893.

[11]  R. Saglia,et al.  Search for giant planets in M67 - III. Excess of hot Jupiters in dense open clusters , 2016, 1606.05247.

[12]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[13]  Andrew R Casey,et al.  SICK: THE SPECTROSCOPIC INFERENCE CRANK , 2016, 1603.03043.

[14]  F. Grundahl,et al.  Atomic diffusion and mixing in old stars VI: The lithium content of M30 , 2016, 1603.01565.

[15]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution , 2016, 1602.03289.

[16]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[17]  J. Richer,et al.  Atomic Diffusion in Stars , 2015 .

[18]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[19]  G. Carraro,et al.  Testing the chemical tagging technique with open clusters , 2015, 1503.02082.

[20]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[21]  R. S. Ram,et al.  SEARCHING FOR CHEMICAL SIGNATURES OF MULTIPLE STELLAR POPULATIONS IN THE OLD, MASSIVE OPEN CLUSTER NGC 6791 , 2014, 1409.8283.

[22]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[23]  G. Carraro,et al.  Updated properties of the old open cluster Melotte 66: Searching for multiple stellar populations , 2014, 1404.6748.

[24]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[25]  L. Pasquini,et al.  Three planetary companions around M 67 stars , 2014, 1401.4905.

[26]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[27]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[28]  F. Grundahl,et al.  Atomic diffusion and mixing in old stars - IV. Weak abundance trends in the globular cluster NGC 6752 , 2013, 1305.1774.

[29]  J. Koppenhoefer,et al.  Search for giant planets in M 67. IV. Survey results , 2017, 1703.04296.

[30]  S. Lucatello,et al.  Searching for multiple stellar populations in the massive, old open cluster Berkeley 39 , 2012, 1211.1142.

[31]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[32]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[33]  L. Pasquini,et al.  Search for giant planets in M 67 - I. Overview , 2012, 1206.5820.

[34]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[35]  Angela Bragaglia,et al.  Multiple populations in globular clusters , 2012, 1201.6526.

[36]  A. Weiss,et al.  The age of the Milky Way halo stars from the Sloan Digital Sky Survey , 2011, 1105.2022.

[37]  M. Asplund,et al.  Non-LTE calculations for neutral Na in late-type stars using improved atomic data , 2011, 1102.2160.

[38]  A. Korn,et al.  M67-1194, an unusually Sun-like solar twin in M67 , 2010, 1009.4579.

[39]  J. Anderson,et al.  The end of the white dwarf cooling sequence in M 67 , 2010, 1001.3827.

[40]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[41]  Michael F. Skrutskie,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) in Sloan Digital Sky Survey III (SDSS-III) , 2009, Proceedings of the International Astronomical Union.

[42]  A. Dotter,et al.  DEEP 2MASS PHOTOMETRY OF M67 AND CALIBRATION OF THE MAIN-SEQUENCE J − KS COLOR DIFFERENCE AS AN AGE INDICATOR , 2009, 0904.2907.

[43]  L. Pasquini,et al.  Abundances of four open clusters from solar stars , 2008, 0806.2280.

[44]  E. Grebel,et al.  Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters , 2008, 0805.1067.

[45]  J. Anderson,et al.  Ground-based CCD astrometry with wide-field imagers - II. A star catalog for M 67: WFI@2.2 m MPG/ESO astrometry, FLAMES@VLT radial velocities , 2008, 0803.0004.

[46]  Denmark,et al.  Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397 , 2007, 0709.0639.

[47]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[48]  L. Pasquini,et al.  Element abundances of unevolved stars in the open cluster M 67 , 2006, astro-ph/0601239.

[49]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[50]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[51]  J. Richer,et al.  Models for Solar Abundance Stars with Gravitational Settling and Radiative Accelerations: Application to M67 and NGC 188 , 2004, astro-ph/0402544.

[52]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[53]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[54]  J. Richer,et al.  Models of Metal-poor Stars with Gravitational Settling and Radiative Accelerations. II. The Age of the Oldest Stars , 2001, astro-ph/0112113.

[55]  J. Richer,et al.  Iron Convection Zones in B, A, and F Stars , 2001 .

[56]  M. Shetrone,et al.  Spectroscopy of Blue Stragglers and Turnoff Stars in M67 (NGC 2682) , 2000, astro-ph/0006399.

[57]  F. Rogers,et al.  Consistent Solar Evolution Model Including Diffusion and Radiative Acceleration Effects , 1998 .

[58]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[59]  K. Swamy Profiles of strong lines in K- dwarfs , 1966 .