Immobilized RNA switches for the analysis of complex chemical and biological mixtures

[1]  D. Sen,et al.  Rationally designed allosteric variants of hammerhead ribozymes responsive to the HIV-1 Tat protein. , 2002, Combinatorial chemistry & high throughput screening.

[2]  R. Breaker,et al.  Cooperative binding of effectors by an allosteric ribozyme. , 2001, Nucleic acids research.

[3]  R R Breaker,et al.  Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. , 2001, RNA.

[4]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[5]  M. Gerstein,et al.  Analysis of yeast protein kinases using protein chips , 2000, Nature Genetics.

[6]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[7]  I. Tomlinson,et al.  Antibody arrays for high-throughput screening of antibody–antigen interactions , 2000, Nature Biotechnology.

[8]  Y. Komatsu,et al.  Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. , 2000, Journal of molecular biology.

[9]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[10]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[11]  R R Breaker,et al.  Allosteric nucleic acid catalysts. , 2000, Current opinion in structural biology.

[12]  R R Breaker,et al.  Structural diversity of self-cleaving ribozymes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R R Breaker,et al.  Altering molecular recognition of RNA aptamers by allosteric selection. , 2000, Journal of molecular biology.

[14]  A D Ellington,et al.  Design and optimization of effector-activated ribozyme ligases. , 2000, Nucleic acids research.

[15]  R R Breaker,et al.  Nucleic acid molecular switches. , 1999, Trends in biotechnology.

[16]  A. Ellington,et al.  Training ribozymes to switch , 1999, Nature Structural Biology.

[17]  Ronald R. Breaker,et al.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP , 1999, Nature Structural Biology.

[18]  R. Breaker,et al.  Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. , 1999, Structure.

[19]  R R Breaker,et al.  Deoxyribozymes: new players in the ancient game of biocatalysis. , 1999, Current opinion in structural biology.

[20]  Ronald R. Breaker,et al.  Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl Group , 1999 .

[21]  R. Breaker,et al.  Engineering precision RNA molecular switches. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Asano,et al.  A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. , 1998, Molecular cell.

[23]  R. Breaker,et al.  Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. , 1998, Nucleic acids research.

[24]  Y. Okuno,et al.  Allosteric regulation of a ribozyme activity through ligand-induced conformational change. , 1998, Nucleic acids research.

[25]  T. M. Herne,et al.  Characterization of DNA Probes Immobilized on Gold Surfaces , 1997 .

[26]  R R Breaker,et al.  Rational design of allosteric ribozymes. , 1997, Chemistry & biology.

[27]  Ronald R. Breaker,et al.  In Vitro Selection of Catalytic Polynucleotides. , 1997, Chemical reviews.

[28]  Andrew D. Ellington,et al.  Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. , 1997, Chemical reviews.

[29]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[30]  P. Lizardi,et al.  An Allosteric Hammerhead Ribozyme , 1995, Bio/Technology.

[31]  O. Uhlenbeck,et al.  Kinetics of intermolecular cleavage by hammerhead ribozymes. , 1992, Biochemistry.

[32]  R Cedergren,et al.  Numbering system for the hammerhead. , 1992, Nucleic acids research.

[33]  A. Peterkofsky,et al.  Characterization and generation of Escherichia coli adenylate cyclase deletion mutants , 1991, Journal of bacteriology.

[34]  A. Ballesteros,et al.  Determination of intrinsic properties of immobilized enzymes , 1981, Applied biochemistry and biotechnology.

[35]  J. Beckwith,et al.  Deletion of the Escherichia coli crp Gene , 1975, Journal of bacteriology.

[36]  G. Chaloner-Larsson,et al.  Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. , 1974, Biochemical and biophysical research communications.

[37]  Andrew Ellington,et al.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons , 1999, Nature Biotechnology.

[38]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[39]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[40]  R. Symons,et al.  Small catalytic RNAs. , 1992, Annual review of biochemistry.

[41]  B. Ganem RNA world , 1987, Nature.