Monte Carlo method for calculating oxygen abundances and their uncertainties from strong-line flux measurements

We present the open-source Python code pyMCZ that determines oxygen abundance and its distribution from strong emission lines in the standard metallicity calibrators, based on the original IDL code of Kewley & Dopita (2002) with updates from Kewley & Ellison (2008), and expanded to include more recently developed calibrators. The standard strong-line diagnostics have been used to estimate the oxygen abundance in the interstellar medium through various emission line ratios in many areas of astrophysics, including galaxy evolution and supernova host galaxy studies. We introduce a Python implementation of these methods that, through Monte Carlo sampling, better characterizes the statistical oxygen abundance confidence region including the effect due to the propagation of observational uncertainties. These uncertainties are likely to dominate the error budget in the case of distant galaxies, hosts of cosmic explosions. Given line flux measurements and their uncertainties, our code produces synthetic distributions for the oxygen abundance in up to 15 metallicity calibrators simultaneously, as well as for E(B-V), and estimates their median values and their 68% confidence regions. We test our code on emission line measurements from a sample of nearby supernova host galaxies (z < 0.15) and compare our metallicity results with those from previous methods. Our metallicity estimates are consistent with previous methods but yield smaller statistical uncertainties. Systematic uncertainties are not taken into account. We offer visualization tools to assess the spread of the oxygen abundance in the different calibrators, as well as the shape of the estimated oxygen abundance distribution in each calibrator, and develop robust metrics for determining the appropriate Monte Carlo sample size. The code is open access and open source and can be found at this https URL (Abridged)

[1]  T. Thuan,et al.  Oxygen Abundance Determination in H II Regions: The Strong Line Intensities-Abundance Calibration Revisited , 2005 .

[2]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[3]  Á. D́ıaz,et al.  An empirical calibration of nebular abundances based on the sulphur emission lines , 2000 .

[4]  S. Owocki,et al.  The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona , 1983 .

[5]  L. Kewley,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 HIGH-RESOLUTION MEASUREMENTS OF THE HALOS OF FOUR DARK MATTER-DOMINATED GALAXIES: DEVIATIONS FROM A UNIVERSAL DENSITY PROFILE 1 , 2004 .

[6]  J. Anderson,et al.  Observational constraints on the progenitor metallicities of core-collapse supernovae★ , 2010, 1006.0968.

[7]  L. Kewley,et al.  METALLICITY GRADIENTS AND GAS FLOWS IN GALAXY PAIRS , 2010, 1008.2204.

[8]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[9]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[10]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[11]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[12]  E. P'erez-Montero Deriving model-based Te-consistent chemical abundances in ionized gaseous nebulae , 2014, 1404.3936.

[13]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[14]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[15]  Rene Andrae,et al.  Error estimation in astronomy: A guide , 2010, 1009.2755.

[16]  T. Thuan,et al.  NEW IMPROVED CALIBRATION RELATIONS FOR THE DETERMINATION OF ELECTRON TEMPERATURES AND OXYGEN AND NITROGEN ABUNDANCES IN H ii REGIONS , 2010 .

[17]  L. Kewley,et al.  The MAPPINGS III Library of Fast Radiative Shock Models , 2008, 0805.0204.

[18]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[19]  L. Kewley,et al.  GAS-PHASE OXYGEN GRADIENTS IN STRONGLY INTERACTING GALAXIES. I. EARLY-STAGE INTERACTIONS , 2010, 1009.0761.

[20]  J. Moustakas,et al.  CHAOS I. DIRECT CHEMICAL ABUNDANCES FOR H II ?> REGIONS IN NGC 628 , 2015, 1501.02270.

[21]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[22]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[23]  L. Pilyugin On the oxygen abundance determination in HII regions. - High-metallicity regions , 2001, astro-ph/0101446.

[24]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[25]  J. Moustakas,et al.  CHAOS. II. GAS-PHASE ABUNDANCES IN NGC 5194 , 2015, 1501.02272.

[26]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[27]  L. Wisotzki,et al.  Imprints of galaxy evolution on H II regions - Memory of the past uncovered by the CALIFA survey , 2014, 1409.8293.

[28]  J. Fynbo,et al.  The properties of SN Ib/c locations , 2011, 1102.2249.

[29]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[30]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[31]  Andrew J. Connolly,et al.  Statistics, Data Mining, and Machine Learning in Astronomy , 2014 .

[32]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[33]  L. Kewley,et al.  NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H ii REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA , 2013, 1307.5950.

[34]  M. Dopita,et al.  RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H ii REGIONS AND PLANETARY NEBULAE: κ-DISTRIBUTED ELECTRONS , 2012, 1204.3880.

[35]  V. Vasyliūnas Corrections to paper by Vytenis M. Vasyliunas ‘A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3’ , 1968 .

[36]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[37]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[38]  C. Mendoza,et al.  TESTING THE EXISTENCE OF NON-MAXWELLIAN ELECTRON DISTRIBUTIONS IN H ii REGIONS AFTER ASSESSING ATOMIC DATA ACCURACY , 2014, 1402.4044.

[39]  Brazil,et al.  Alternative diagnostic diagrams and the 'forgotten' population of weak line galaxies in the SDSS , 2009, 0912.1643.

[40]  M. Asplund,et al.  The chemical composition of the Sun , 2010 .

[41]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[42]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[43]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[44]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[45]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[46]  L. Kewley,et al.  PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES , 2010, 1007.0661.

[47]  Jr.,et al.  OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES , 2010, 1007.4547.

[48]  David P. Doane,et al.  Aesthetic Frequency Classifications , 1976 .

[49]  Hui Li,et al.  THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION , 2012, 1203.4817.

[50]  M. Peimbert Temperature Determinations of H II Regions , 1967 .

[51]  L. Kewley,et al.  Eliminating error in the chemical abundance scale for extragalactic H ii regions , 2012, 1203.5021.

[52]  T. Thuan,et al.  Abundance determination from global emission‐line SDSS spectra: exploring objects with high N/O ratios , 2012, 1201.1554.

[53]  S. Foley The Host Galaxies of Gamma Ray Bursts , 2005 .

[54]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS , 2009, 0907.4988.

[55]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[56]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[57]  J Pérez-Urizar,et al.  Pharmacokinetic-pharmacodynamic modeling: why? , 2000, Archives of medical research.

[58]  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[59]  L. Kewley,et al.  IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS , 2014, 1410.8146.

[60]  A. Bressan,et al.  PopStar I: evolutionary synthesis model description , 2009, 0905.3664.

[61]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[62]  Peter L. Bonate,et al.  Pharmacokinetic-Pharmacodynamic Modeling And Simulation , 2005 .

[63]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[64]  M. Dopita,et al.  Theoretical models for H II regions. II - The extragalactic H II region abundance sequence , 1986 .

[65]  G. Stasińska,et al.  The chemical composition of the Orion star forming region. II. Stars, gas, and dust: the abundance discrepancy conundrum , 2010, 1010.5903.

[66]  M. Dopita,et al.  Theoretical models for H II regions. I. Diagnostic diagrams , 1985 .

[67]  E. Berger,et al.  A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS , 2012, 1206.2643.

[68]  L. Galbany,et al.  The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.

[69]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[70]  David W. Hogg Data analysis recipes: Choosing the binning for a histogram , 2008 .

[71]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[72]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.