Nonlinear Optical Effects in Amorphous Semiconductors

In amorphous semiconductors electronic optical nonlinearities are used as a spectroscopic tool rather than a non-linear effect. On the other hand light-induced rearrangement of certain atomic positions, a unique process occuring only in the amorphous state, has a strong effect on the optical properties. Such “photostructural changes” are reversible in bulk samples or well-annealed films. This fact makes possible to switch the irradiated spot between two states by using light signals of different amplitudes, wavelengths or polarizations. The possibility of using these effects as a part of optical circuits is pointed out. In amorphen Halbleitern werden elektronenoptische Nichtlinearitaten mehr als spektroskopisches Werkzeug denn als ein nichtlinearer Effekt benutzt. Auf der anderen Seite ubt die lichtinduzierte Neuordnung gewisser Atompositionen, ein einzigartiger Vorgang, der nur im amorphen Zustand auftritt, einen starken Einflus auf die optischen Eigenschaften aus. Derartige Photostruktur-Anderungen sind in Volumenproben oder gutgetemperten Schichten reversibel. Diese Tatsache macht die Umschaltung des Bestrahlungspunktes zwischen zwei Zustanden moglich, indem Lichtsignale mit unterschiedlichen Amplituden, Wellenlangen oder Polarisationen benutzt werden. Die Moglichkeit wird gezeigt, diese Effekte als einen Teil optischer Schaltkreise zu nutzen.

[1]  A. Kolobov,et al.  A model of photostructural changes in chalcogenide vitreous semiconductors: 1. Theoretical considerations , 1981 .

[2]  A. E. Owen,et al.  Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors , 1985 .

[3]  Mohammad R. Taghizadeh,et al.  Thermally induced optical bistability in thin film devices , 1985 .

[4]  B. T. Kolomiets,et al.  Photoinduced Optical Anisotropy in Chalcogenide Vitreous Semiconducting Films , 1979, April 16.

[5]  V. Lyubin Photostructural changes in chalcogenide glasses , 1987 .

[6]  J. Tauc,et al.  Photoinduced midgap absorption in tetrahedrally bonded amorphous semiconductors , 1982 .

[7]  Albert Rose,et al.  Concepts in photoconductivity and allied problems , 1963 .

[8]  G. Zentai,et al.  Light-induced transmittance oscillation in GeSe2 thin films , 1977 .

[9]  C. T. Seaton,et al.  Band-Gap—Resonant Nonlinear Refraction in III-V Semiconductors , 1981 .

[10]  A. M. Robinson Spatial Resolution of Gain in CO2 Transversely Excited Pulsed Discharge , 1971 .

[11]  S. W. Ing,et al.  Photodecomposition of Amorphous As2Se3 and As2S3 , 1971 .

[12]  J. Morniroli,et al.  Crystalline defects in M7C3 carbides , 1983 .

[13]  K. Tanaka,et al.  Reversible photostructural change: Mechanisms, properties and applications , 1980 .

[14]  D. Gravesteijn Materials developments for write-once and erasable phase-change optical recording. , 1988, Applied optics.

[15]  S. Elliott,et al.  A unified model for reversible photostructural effects in chalcogenide glasses , 1986 .

[16]  I Janossy,et al.  Laser-induced optical anisotropy in self-supporting amorphous GeSe2 films , 1982 .

[17]  A. Owen,et al.  Reversible photodarkening and structural changes in As2S3 thin films , 1984 .

[18]  Samuel L. McCall,et al.  Instability and regenerative pulsation phenomena in Fabry‐Perot nonlinear optic media devices , 1978 .

[19]  A. Firth,et al.  Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films , 1983 .

[20]  S. Keneman Hologram Storage in Arsenic Trisulfide Thin Films , 1971 .

[21]  I. Jánossy,et al.  Model for the non-linear intensity dependence of photostructural changes in amorphous semiconductors , 1987 .

[22]  Keiji Tanaka,et al.  Mechanisms of photodarkening in amorphous chalcogenides , 1983 .