First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color-magnitude diagrams and radial profiles of red and blue galaxies at $0.1

We present a statistical study of the redshift evolution of the cluster galaxy population over a wide redshift range from 0.1 to 1.1, using $\sim 1900$ optically-selected CAMIRA clusters from $\sim 232$~deg$^2$ of the Hyper Suprime-Cam (HSC) Wide S16A data. Our stacking technique with a statistical background subtraction reveals color-magnitude diagrams of red-sequence and blue cluster galaxies down to faint magnitudes of $m_z\sim 24$. We find that the linear relation of red-sequence galaxies in the color-magnitude diagram extends down to the faintest magnitudes we explore with a small intrinsic scatter $\sigma_{\rm int}(g-r)<0.1$. The scatter does not evolve significantly with redshift. The stacked color-magnitude diagrams are used to define red and blue galaxies in clusters for studying their radial number density profiles without resorting to photometric redshifts of individual galaxies. We find that red galaxies are significantly more concentrated toward cluster centers and blue galaxies dominate the outskirt of clusters. We explore the fraction of red galaxies in clusters as a function of redshift, and find that the red fraction decreases with increasing distances from cluster centers. The red fraction exhibits a moderate decrease with increasing redshift. The radial number density profiles of cluster member galaxies are also used to infer the location of the steepest slope in the three dimensional galaxy density profiles. For a fixed threshold in richness, we find little redshift evolution in this location.

[1]  A. Leauthaud,et al.  First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies , 2017, 1709.04484.

[2]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[3]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[4]  Satoshi Miyazaki,et al.  The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.

[5]  S. More,et al.  First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation quenching from z = 0.2 to 1.1 , 2017, 1704.06219.

[6]  S. More,et al.  The Halo Boundary of Galaxy Clusters in the SDSS , 2017, 1702.01722.

[7]  S. White,et al.  Assembly bias and splashback in galaxy clusters , 2017, 1702.01682.

[8]  A. Schwope,et al.  The Integrated Cluster Finder for the ARCHES project , 2016, 1610.00989.

[9]  J. Frieman,et al.  Galaxy populations in massive galaxy clusters to z = 1.1: colour distribution, concentration, halo occupation number and red sequence fraction , 2016, 1604.00988.

[10]  M. Huertas-Company,et al.  The accelerated build-up of the red sequence in high-redshift galaxy clusters , 2016, 1601.07578.

[11]  S. More,et al.  DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS , 2016, 1601.06063.

[12]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[13]  Masakazu A. R. Kobayashi,et al.  The New Numerical Galaxy Catalog ($\nu^2$GC): An Updated Semi-analytic Model of Galaxy and AGN with Large Cosmological N-body Simulation , 2015, 1508.07215.

[14]  S. More,et al.  THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.

[15]  Masakazu A. R. Kobayashi,et al.  The ν2GC simulations: Quantifying the dark side of the universe in the Planck cosmology , 2014, 1412.2860.

[16]  N. Dalal,et al.  Splashback in accreting dark matter halos , 2014, 1409.4482.

[17]  M. Oguri A cluster finding algorithm based on the multiband identification of red sequence galaxies , 2014, 1407.4693.

[18]  S. Planelles,et al.  Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters , 2014, 1404.3956.

[19]  A. Kravtsov,et al.  DEPENDENCE OF THE OUTER DENSITY PROFILES OF HALOS ON THEIR MASS ACCRETION RATE , 2014, 1401.1216.

[20]  S. Andreon,et al.  JKCS 041: a Coma cluster progenitor at z = 1.803 , 2013, 1311.4361.

[21]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[22]  P. Rosati,et al.  The Importance of Major Mergers in the Build Up of Stellar Mass in Brightest Cluster Galaxies at z = 1 , 2013, 1305.0882.

[23]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[24]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[25]  P. A. Price,et al.  THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.

[26]  A. Finoguenov,et al.  GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS , 2013, 1302.6620.

[27]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm , 2012, 1209.0259.

[28]  D. Stern,et al.  ASSEMBLY OF THE RED SEQUENCE IN INFRARED-SELECTED GALAXY CLUSTERS FROM THE IRAC SHALLOW CLUSTER SURVEY , 2012, 1207.4790.

[29]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[30]  B. Hsieh,et al.  EVOLUTION OF GROUP GALAXIES FROM THE FIRST RED-SEQUENCE CLUSTER SURVEY , 2012, 1202.4767.

[31]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[32]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[33]  Martha P. Haynes,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY. X. THE H i MASS FUNCTION AND FROM THE 40% ALFALFA SURVEY , 2010, 1008.5107.

[34]  Masayuki Tanaka,et al.  The environmental dependence of galaxy properties at z = 2 , 2010, 1005.2253.

[35]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[36]  Jiangang Hao,et al.  PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL , 2009, 0907.4383.

[37]  M. Gladders,et al.  The Color Bimodality in Galaxy Clusters since z ~ 0.9 , 2008, 0802.3726.

[38]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[39]  U. Chicago,et al.  Spectroscopy of Moderately High Redshift RCS-1 Clusters , 2007, 0705.0782.

[40]  E. Rozo,et al.  MaxBCG: A Red-Sequence Galaxy Cluster Finder , 2007, astro-ph/0701268.

[41]  R. Pelló,et al.  The build-up of the colour-magnitude relation in galaxy clusters since z ~ 0.8 , 2006, astro-ph/0610373.

[42]  Porto,et al.  Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.

[43]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[44]  Y. Loh,et al.  The bright end of the luminosity function of red sequence galaxies , 2005, astro-ph/0510500.

[45]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[46]  Michael D. Gladders,et al.  The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29 , 2004, astro-ph/0411075.

[47]  A. Kimball,et al.  Measurement of Galaxy Cluster Sizes, Radial Profiles, and Luminosity Functions from SDSS Photometric Data , 2004, astro-ph/0410467.

[48]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[49]  Gavin Dalton,et al.  The 2dF Galaxy Redshift Survey: the blue galaxy fraction and implications for the Butcher—Oemler effect , 2004, astro-ph/0402652.

[50]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[51]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[52]  Christopher J. Miller,et al.  Morphological Butcher–Oemler Effect in the SDSS “Cut and Enhance” Galaxy Cluster Catalog , 2003, astro-ph/0301302.

[53]  S. Borgani,et al.  THE EVOLUTION OF X-RAY CLUSTERS OF GALAXIES , 2002, astro-ph/0209035.

[54]  T. Okamoto,et al.  Environmental Effects on Evolution of Cluster Galaxies in a Λ-dominated Cold Dark Matter Universe , 2001, astro-ph/0108434.

[55]  T. Okamoto,et al.  Morphology-Density Relation for Simulated Clusters of Galaxies in Cold Dark Matter-dominated Universes , 2000, astro-ph/0004320.

[56]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[57]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[58]  J. Silk,et al.  The Age and Metallicity Range of Early-Type Galaxies in Clusters , 1998, astro-ph/9803235.

[59]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[60]  M. Dickinson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters , 1997, astro-ph/9708037.

[61]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[62]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[63]  Sandra M. Faber,et al.  Variations in Spectral-Energy Distributions and Absorption-Line Strengths among Elliptical Galaxies , 1973 .

[64]  B. Whitmore What determines the morphological fractions in clusters of galaxies , 1993 .

[65]  B. Whitmore,et al.  On the interpretation of the morphology-density relation for galaxies in clusters , 1991 .

[66]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .