Partial Differential Equations

[1]  Mark Freidlin,et al.  Averaging principle for a class of stochastic reaction–diffusion equations , 2008, 0805.0297.

[2]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[3]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[4]  Jinqiao Duan,et al.  Probability and partial differential equations in modern applied mathematics , 2005 .

[5]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[6]  Y. Kifer,et al.  Diffusion approximation for slow motion in fully coupled averaging , 2004 .

[7]  E Weinan,et al.  Some Recent Progress in Multiscale Modeling , 2004 .

[8]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[9]  R. Temam,et al.  Mathematical Modeling in Continuum Mechanics: Index , 2000 .

[10]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[11]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .

[12]  Hisao Watanabe,et al.  Averaging and fluctuations for parabolic equations with rapidly oscillating random coefficients , 1988 .

[13]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[14]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[15]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[16]  George Papanicolaou,et al.  A limit theorem for turbulent diffusion , 1979 .

[17]  R. Z. Khasminskij On the principle of averaging the Itov's stochastic differential equations , 1968, Kybernetika.

[18]  V. Volosov,et al.  AVERAGING IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1962 .

[19]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .