The beta log-normal distribution
暂无分享,去创建一个
Gauss M. Cordeiro | Fredy Castellares | Lourdes C. Montenegro | G. Cordeiro | L. C. Montenegro | Fredy Castellares | F. Castellares
[1] Debasis Kundu,et al. Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..
[2] Betty Jones Whitten,et al. Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .
[3] S. Nadarajah,et al. The beta Gumbel distribution , 2004 .
[4] L. Sachs. Angewandte Statistik : Anwendung statistischer Methoden , 1984 .
[5] A. Louisa,et al. コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .
[6] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[7] A. Rényi. On Measures of Entropy and Information , 1961 .
[8] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[9] C. Withers. A simple expression for the multivariate Hermite polynomials , 2000 .
[10] Felix Famoye,et al. Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .
[11] F. Famoye,et al. BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .
[12] Richard M. Bennett,et al. Three-parameter vs. two-parameter Weibull distribution for pultruded composite material properties , 2002 .
[13] Saralees Nadarajah,et al. Closed-form expressions for moments of a class of beta generalized distributions , 2011 .
[14] Michael R Flynn,et al. The 4-parameter lognormal (SB) model of human exposure. , 2004, The Annals of occupational hygiene.
[15] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[16] Bong-Jin Yum,et al. Selection between Weibull and lognormal distributions: A comparative simulation study , 2008, Comput. Stat. Data Anal..
[17] Harold Exton,et al. Multiple hypergeometric functions and applications , 1979 .
[18] Colin Chen. Tests of fit for the three-parameter lognormal distribution , 2006, Comput. Stat. Data Anal..
[19] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[20] Satish K. Agarwal,et al. Extended Weibull type distribution and finite mixture of distributions , 2006 .
[21] Michael J. Mossinghoff,et al. Combinatorics and graph theory , 2000 .
[22] Saralees Nadarajah,et al. Explicit expressions for moments of order statistics , 2008 .
[23] Q. Vuong. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .
[24] Franz Dieter Fischer,et al. Fracture statistics of brittle materials: Weibull or normal distribution. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Samuel Kotz,et al. The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..
[26] J. R. Wallis,et al. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .
[27] John M. Chambers,et al. Graphical Methods for Data Analysis , 1983 .
[28] J. Hosking. L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .
[29] Pravin K. Trivedi,et al. Regression Analysis of Count Data , 1998 .
[30] Gauss M. Cordeiro,et al. The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..
[31] Hoang Pham,et al. On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.
[32] Elisa T. Lee,et al. Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.
[33] José A. Díaz-García,et al. A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.
[34] Joseph Lipka,et al. A Table of Integrals , 2010 .
[35] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[36] Elisa T. Lee,et al. Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.
[37] Beat Kleiner,et al. Graphical Methods for Data Analysis , 1983 .
[38] L. Theodore. Log-Normal Distribution , 2015 .