The beta log-normal distribution

For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.

[1]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[2]  Betty Jones Whitten,et al.  Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .

[3]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[4]  L. Sachs Angewandte Statistik : Anwendung statistischer Methoden , 1984 .

[5]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[6]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[7]  A. Rényi On Measures of Entropy and Information , 1961 .

[8]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[9]  C. Withers A simple expression for the multivariate Hermite polynomials , 2000 .

[10]  Felix Famoye,et al.  Journal of Modern Applied StatisticalMethods Beta-Weibull Distribution: Some Properties and Applications to Censored Data , 2022 .

[11]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[12]  Richard M. Bennett,et al.  Three-parameter vs. two-parameter Weibull distribution for pultruded composite material properties , 2002 .

[13]  Saralees Nadarajah,et al.  Closed-form expressions for moments of a class of beta generalized distributions , 2011 .

[14]  Michael R Flynn,et al.  The 4-parameter lognormal (SB) model of human exposure. , 2004, The Annals of occupational hygiene.

[15]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[16]  Bong-Jin Yum,et al.  Selection between Weibull and lognormal distributions: A comparative simulation study , 2008, Comput. Stat. Data Anal..

[17]  Harold Exton,et al.  Multiple hypergeometric functions and applications , 1979 .

[18]  Colin Chen Tests of fit for the three-parameter lognormal distribution , 2006, Comput. Stat. Data Anal..

[19]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[20]  Satish K. Agarwal,et al.  Extended Weibull type distribution and finite mixture of distributions , 2006 .

[21]  Michael J. Mossinghoff,et al.  Combinatorics and graph theory , 2000 .

[22]  Saralees Nadarajah,et al.  Explicit expressions for moments of order statistics , 2008 .

[23]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[24]  Franz Dieter Fischer,et al.  Fracture statistics of brittle materials: Weibull or normal distribution. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[26]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[27]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[28]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[29]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .

[30]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[31]  Hoang Pham,et al.  On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.

[32]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[33]  José A. Díaz-García,et al.  A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.

[34]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[37]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[38]  L. Theodore Log-Normal Distribution , 2015 .