Synchronization of a new fractional order chaotic system

In this paper we have introduced a new fractional order chaotic system and investigated chaos synchronization between the new fractional order chaotic system and the Lü fractional order chaotic system using active control technique. Numerical simulations are carried out using Matlab to show the effectiveness of the method.

[1]  Carlos Gershenson Complexity at Large - 21.2 , 2015, Complex..

[2]  Reza Ghaderi,et al.  Sliding mode synchronization of an uncertain fractional order chaotic system , 2010, Comput. Math. Appl..

[3]  Mohammad Shahzad,et al.  Global chaos synchronization of new chaotic system using linear active control , 2015, Complex..

[4]  Kun-Lin Wu,et al.  A simple method to synchronize chaotic systems and its application to secure communications , 2008, Math. Comput. Model..

[5]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[6]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[7]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[8]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[9]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[10]  Faqiang Wang,et al.  A new criterion for chaos and hyperchaos synchronization using linear feedback control , 2006 .

[11]  Her-Terng Yau,et al.  Application of a Chaotic Synchronization System to Secure Communication , 2012, Inf. Technol. Control..

[12]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[13]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[14]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[15]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[16]  I. Podlubny Fractional differential equations , 1998 .

[17]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[18]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[19]  Rabha W. Ibrahim,et al.  Stability and Stabilizing of Fractional Complex Lorenz Systems , 2013 .

[20]  Samuel Bowong,et al.  Synchronization of uncertain chaotic systems via backstepping approach , 2004 .

[21]  Hamid A. Jalab,et al.  Time-Space Fractional Heat Equation in the Unit Disk , 2013 .

[22]  Hamid A. Jalab,et al.  Existence and uniqueness of a complex fractional system with delay , 2013 .

[23]  M. Yassen Chaos control of chaotic dynamical systems using backstepping design , 2006 .

[24]  Uchechukwu E. Vincent,et al.  Multi-switching combination synchronization of chaotic systems , 2015, Nonlinear Dynamics.

[25]  Hongtao Lu,et al.  Synchronization of a new fractional-order hyperchaotic system , 2009 .

[26]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[27]  Yongguang Yu,et al.  The synchronization of fractional-order Rössler hyperchaotic systems☆ , 2008 .

[28]  N. Laskin Fractional market dynamics , 2000 .

[29]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[30]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[31]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[32]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[33]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..