Chapter 38 – Wake-Promoting Medications: Basic Mechanisms and Pharmacology

[1]  J. Leysen,et al.  Does phenylethylamine act as an endogenous amphetamine in some patients? , 1999, The international journal of neuropsychopharmacology.

[2]  J. Zajecka,et al.  CNS stimulant potentiation of monoamine oxidase inhibitors in treatment-refractory depression. , 1991, Journal of clinical psychopharmacology.

[3]  H. Haas,et al.  Excitation of Ventral Tegmental Area Dopaminergic and Nondopaminergic Neurons by Orexins/Hypocretins , 2003, The Journal of Neuroscience.

[4]  P. Jenner,et al.  Selegiline in narcolepsy. , 1986, Sleep.

[5]  T. Rugino,et al.  Effects of modafinil in children with attention-deficit/hyperactivity disorder: an open-label study. , 2001, Journal of the American Academy of Child and Adolescent Psychiatry.

[6]  C. Bradley,et al.  AMPHETAMINE (BENZEDRINE) THERAPY OF CHILDREN'S BEHAVIOR DISORDERS* , 1941 .

[7]  M Partinen,et al.  Selegiline in the treatment of narcolepsy , 1994, Neurology.

[8]  T. Porkka-Heiskanen,et al.  Adenosine, Energy Metabolism, and Sleep , 2003, TheScientificWorldJournal.

[9]  G. Uhl,et al.  Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. , 1991, Science.

[10]  C. Guilleminault,et al.  Further characterization of the alpha-1 receptor subtype involved in the control of cataplexy in canine narcolepsy. , 1993, The Journal of pharmacology and experimental therapeutics.

[11]  L. Golbe Deprenyl as symptomatic therapy in Parkinson's disease. , 1988, Clinical neuropharmacology.

[12]  E. Mignot,et al.  Dopamine D3 agonists into the substantia nigra aggravate cataplexy but do not modify sleep [corrected]. , 1999, Neuroreport.

[13]  P. Robertson,et al.  In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. , 2000, Drug metabolism and disposition: the biological fate of chemicals.

[14]  C. Guilleminault,et al.  Canine cataplexy is preferentially controlled by adrenergic mechanisms: evidence using monoamine selective uptake inhibitors and release enhancers , 2005, Psychopharmacology.

[15]  E. Mignot,et al.  Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. , 2003, Sleep.

[16]  H. Nagaraja,et al.  Efficacy and safety of modafinil (Provigil®) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study , 2002, Journal of neurology, neurosurgery, and psychiatry.

[17]  Sebastiaan Overeem,et al.  A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains , 2000, Nature Medicine.

[18]  L S Seiden,et al.  Amphetamine: effects on catecholamine systems and behavior. , 1993, Annual review of pharmacology and toxicology.

[19]  Michael Aldrich,et al.  Reduced Number of Hypocretin Neurons in Human Narcolepsy , 2000, Neuron.

[20]  A. Yamanaka,et al.  Orexins activate histaminergic neurons via the orexin 2 receptor. , 2002, Biochemical and biophysical research communications.

[21]  L. Gold,et al.  Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil , 1996, Psychopharmacology.

[22]  R. McCarley,et al.  Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. , 1997, Science.

[23]  R. S. Miletich,et al.  N6 (L-Phenylisopropyl)adenosine (L-PIA) increases slow-wave sleep (S2) and decreases wakefulness in rats , 1982, Brain Research.

[24]  I. Sora,et al.  The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  J. Monti Catecholamines and the sleep-wake cycle. I. EEG and behavioral arousal. , 1982, Life sciences.

[26]  J. Montplaisir,et al.  Effects of modafinil on symptomatology of human narcolepsy. , 1993, Clinical neuropharmacology.

[27]  Y. Wong,et al.  Open‐Label, Single‐Dose Pharmacokinetic Study of Modafinil Tablets: Influence of Age and Gender in Normal Subjects , 1999, Journal of clinical pharmacology.

[28]  M. Jouvet,et al.  Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  H. Haas,et al.  Orexin/Hypocretin Excites the Histaminergic Neurons of the Tuberomammillary Nucleus , 2001, The Journal of Neuroscience.

[30]  E. Mignot,et al.  Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders , 2002, Nature Neuroscience.

[31]  P. Masand,et al.  Psychostimulants for depression in hospitalized cancer patients. , 1996, Psychosomatics.

[32]  J. Feighner,et al.  Combined MAOI, TCA, and direct stimulant therapy of treatment-resistant depression. , 1985, The Journal of clinical psychiatry.

[33]  E. Mignot,et al.  Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs , 2001, Neuroscience Letters.

[34]  G. Mayer,et al.  Selegeline hydrochloride treatment in narcolepsy. A double-blind, placebo-controlled study. , 1995, Clinical neuropharmacology.

[35]  M. Jouvet,et al.  Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat , 1992, Brain Research.

[36]  S. Nishino,et al.  Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. , 1998, Sleep research online : SRO.

[37]  B. Angrist,et al.  Comparative Psychotomimetic Effects of Stereoisomers of Amphetamine , 1971, Nature.

[38]  E. Mignot,et al.  The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. , 2002, Archives of neurology.

[39]  C. Guilleminault,et al.  Effects of SDZ NVI-085, a putative subtype-selective alpha 1-agonist, on canine cataplexy, a disorder of rapid eye movement sleep. , 1991, European journal of pharmacology.

[40]  H. Himwich,et al.  Electroencephalographic analyses of amphetamine and its methoxy derivatives with reference to their sites of EEG alerting in the rabbit brain. , 1969, International journal of neuropharmacology.

[41]  Y. Hishikawa,et al.  Therapeutic effects of mazindol on narcolepsy. , 1986, Sleep.

[42]  Emmanuel Mignot,et al.  The Sleep Disorder Canine Narcolepsy Is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene , 1999, Cell.

[43]  F. Rambert,et al.  Lack of pre-synaptic dopaminergic involvement in modafinil activity in anaesthetized mice: In vivo voltammetry studies , 1994, Neuropharmacology.

[44]  M. Prinzmetal,et al.  THE USE OF BENZEDRINE FOR THE TREATMENT OF NARCOLEPSY , 1935 .

[45]  C. Saper,et al.  Hypothalamic Arousal Regions Are Activated during Modafinil-Induced Wakefulness , 2000, The Journal of Neuroscience.

[46]  Randy D. Blakely,et al.  Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter , 1991, Nature.

[47]  E. Mignot,et al.  Comparative effects of modafinil and amphetamine on daytime sleepiness and cataplexy of narcoleptic dogs. , 1995, Sleep.

[48]  K. Fuxe,et al.  Inhibitory effects of the psychoactive drug modafinil on γ-aminobutyric acid outflow from the cerebral cortex of the awake freely moving guinea-pig , 1992, Naunyn-Schmiedeberg's Archives of Pharmacology.

[49]  J. Schwartz,et al.  Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat , 1990, Brain Research.

[50]  M. Jouvet,et al.  Successful treatment of idiopathic hypersomnia and narcolepsy with modafinil , 1988, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[51]  T. Pollmächer,et al.  Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy , 2001 .

[52]  R. Gainetdinov,et al.  Functional hyperdopaminergia in dopamine transporter knock-out mice , 1999, Biological Psychiatry.

[53]  K. Fuxe,et al.  The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. , 1996, European journal of pharmacology.

[54]  I. Sora,et al.  Dopaminergic Role in Stimulant-Induced Wakefulness , 2001, The Journal of Neuroscience.

[55]  M. I. Smith,et al.  Orexin A activates locus coeruleus cell firing and increases arousal in the rat. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Reynolds,et al.  Deprenyl is metabolized to methamphetamine and amphetamine in man. , 1978, British journal of clinical pharmacology.

[57]  R. Moratalla,et al.  Inactivation of Adenosine A2A Receptors Selectively Attenuates Amphetamine-Induced Behavioral Sensitization , 2003, Neuropsychopharmacology.

[58]  Jon T. Willie,et al.  To eat or to sleep? Orexin in the regulation of feeding and wakefulness. , 2001, Annual review of neuroscience.

[59]  J. O'Callaghan,et al.  d-MDMA during vitamin E deficiency: effects on dopaminergic neurotoxicity and hepatotoxicity , 2002, Brain Research.

[60]  H. Haas,et al.  Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat , 2001, Neuropharmacology.

[61]  Wallace Ag AN 448 Sandoz (Mazindol) in the treatment of obesity. , 1976 .

[62]  P. Luppi,et al.  Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. , 2004, Sleep.

[63]  Y. Wong,et al.  A Double‐Blind, Placebo‐Controlled, Ascending‐Dose Evaluation of the Pharmacokinetics and Tolerability of Modafinil Tablets in Healthy Male Volunteers , 1999, Journal of clinical pharmacology.

[64]  E. Hartmann,et al.  Sleep: Effects of d- and l-amphetamine in man and in rat , 1976, Psychopharmacology.

[65]  A. N. van den Pol,et al.  Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems , 1998, The Journal of Neuroscience.

[66]  D. Monti,et al.  Sleep and Waking during Acute Histamine H3 Agonist BP 2.94 or H3 Antagonist Carboperamide (MR 16155) Administration in Rats , 1996, Neuropsychopharmacology.

[67]  G. Sassolas,et al.  Effect of modafinil on plasma melatonin, cortisol and growth hormone rhythms, rectal temperature and performance in healthy subjects during a 36 h sleep deprivation , 1998, Journal of sleep research.

[68]  S. Imam,et al.  The Protective Role of l‐Carnitine against Neurotoxicity Evoked by Drug of Abuse, Methamphetamine, Could Be Related to Mitochondrial Dysfunction , 2002, Annals of the New York Academy of Sciences.

[69]  P. Masand,et al.  Psychostimulant augmentation of second generation antidepressants: A case series , 1998, Depression and anxiety.

[70]  H. Reichmann,et al.  Modafinil for excessive daytime sleepiness in myotonic dystrophy , 2001, Neurology.

[71]  D. Standaert,et al.  Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors , 2000, Neuroscience.

[72]  S. Malitz,et al.  A potential clinical use for methylphenidate with tricyclic antidepressants. , 1971, The American journal of psychiatry.

[73]  J. Caldwell,et al.  Comparative metabolism of some amphetamines in various species , 1973 .

[74]  Maclay Wp,et al.  A multi-centre general practice trial of mazindol in the treatment of obesity. , 1977 .

[75]  C. Guilleminault,et al.  Modafinil binds to the dopamine uptake carrier site with low affinity. , 1994, Sleep.

[76]  A. George,et al.  Central nervous system stimulants. , 2000, Best practice & research. Clinical endocrinology & metabolism.

[77]  T. Sakurai,et al.  Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Axelrod,et al.  The physiological disposition of H3-epinephrine and its metabolite metanephrine. , 1959, The Journal of pharmacology and experimental therapeutics.

[79]  R. Leurs,et al.  Therapeutic potential of histamine H3 receptor agonists and antagonists. , 1998, Trends in pharmacological sciences.

[80]  J. Markowitz,et al.  Pharmacokinetic and Pharmacodynamic Drug Interactions in the Treatment of Attention-Deficit Hyperactivity Disorder , 2001, Clinical pharmacokinetics.

[81]  S. Amara,et al.  Cloning and expression of a cocaine-sensitive rat dopamine transporter. , 1991, Science.

[82]  C. Saper,et al.  Modafinil: a drug in search of a mechanism. , 2004, Sleep.

[83]  J. Parkes,et al.  Mazindol in the treatment of narcolepsy , 1979, Acta neurologica Scandinavica.

[84]  R. E. Yoss,et al.  Treatment of narcolepsy with Ritalin , 1959, Neurology.

[85]  Y. Urade,et al.  Minireview: Sleep regulation in adenosine A2A receptor-deficient mice , 2003, Neurology.

[86]  A. Hunter,et al.  The novel brain neuropeptide, orexin‐A, modulates the sleep–wake cycle of rats , 2000, The European journal of neuroscience.

[87]  F. Rambert,et al.  Central alpha 1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals. , 1990, European journal of pharmacology.

[88]  D. Murphy,et al.  Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D. Edgar,et al.  Modafinil induces wakefulness without intensifying motor activity or subsequent rebound hypersomnolence in the rat. , 1997, The Journal of pharmacology and experimental therapeutics.

[90]  G. Engberg,et al.  The effects of GBR 12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra , 1991, Naunyn-Schmiedeberg's Archives of Pharmacology.

[91]  E. Mignot,et al.  Chronic Oral Administration of CG-3703, a Thyrotropin Releasing Hormone Analog, Increases Wake and Decreases Cataplexy in Canine Narcolepsy , 2000, Neuropsychopharmacology.

[92]  W Melega,et al.  Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Jon T. Willie,et al.  Narcolepsy in orexin Knockout Mice Molecular Genetics of Sleep Regulation , 1999, Cell.

[94]  E. Mignot,et al.  PHARMACOLOGICAL ASPECTS OF HUMAN AND CANINE NARCOLEPSY , 1997, Progress in Neurobiology.

[95]  D. Sulzer,et al.  Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: A mechanism of action , 1990, Neuron.

[96]  M. Billiard,et al.  Effets du modafinil (300 mg) sur le sommeil, la somnolence et la vigilance du narcoleptique , 1993, Neurophysiologie Clinique/Clinical Neurophysiology.

[97]  J. Rapola,et al.  Letter: Maternal alpha-fetoprotein and fetal exomphalos. , 1976, The Lancet.

[98]  D. Sulzer,et al.  Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  J. Siegel,et al.  Systemic administration of hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs. , 2000, Sleep research online : SRO.

[100]  Stephen R. Morairty,et al.  Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state , 2000, Behavioural Brain Research.

[101]  G. Uhl,et al.  Synaptic vesicular monoamine transporter expression: distribution and pharmacologic profile. , 1994, Brain research. Molecular brain research.

[102]  Moore Ke,et al.  Relative potencies of d- and l-amphetamine on the release of dopamine from cat brain in vivo. , 1974 .

[103]  M. Radulovački,et al.  Adenosine analogs and sleep in rats. , 1984, The Journal of pharmacology and experimental therapeutics.

[104]  M. Mitler,et al.  Canine model of narcolepsy: Genetic and developmental determinants , 1982, Experimental Neurology.

[105]  T. Rugino,et al.  Modafinil in children with attention-deficit hyperactivity disorder. , 2003, Pediatric neurology.

[106]  Fei Xu,et al.  Mice lacking the norepinephrine transporter are supersensitive to psychostimulants , 2000, Nature Neuroscience.

[107]  Y. Urade,et al.  Arousal effect of orexin A depends on activation of the histaminergic system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[108]  H Ujike,et al.  VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[109]  R. Mark Wightman,et al.  Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter , 1996, Nature.

[110]  J. Costentin,et al.  Non-amphetaminic mechanism of stimulant locomotor effect of modafinil in mice , 1995, European Neuropsychopharmacology.

[111]  G. Alles THE COMPARATIVE PHYSIOLOGICAL ACTIONS OF dl-β-PHENYLISOPROPYLAMINES I. PRESSOR EFFECT AND TOXICITY , 1933 .

[112]  E. Mignot,et al.  Narcolepsy: genetic predisposition and neuropharmacological mechanisms. REVIEW ARTICLE. , 2000, Sleep medicine reviews.

[113]  G. Nisticó,et al.  Ventral tegmental area: site through which dopamine D2‐receptor agonists evoke behavioural and electrocortical sleep in rats , 1988, British journal of pharmacology.

[114]  P. L. Carlton Potentiation of the behavioral effects of amphetamine by imipramine , 2004, Psychopharmacologia.

[115]  D. Rye,et al.  Reversal of atypical depression, sleepiness, and REM‐sleep propensity in narcolepsy with bupropion , 1998, Depression and anxiety.

[116]  Emmanuel Mignot,et al.  The role of hypocretins (orexins) in sleep regulation and narcolepsy. , 2002, Annual review of neuroscience.

[117]  S. Nishino The hypocretin/orexin system in health and disease , 2003, Biological Psychiatry.

[118]  R. Ferris,et al.  A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. , 1972, The Journal of pharmacology and experimental therapeutics.

[119]  A. Nicholson,et al.  Dopaminergic transmission and the sleep-wakefulness continuum in man , 1990, Neuropharmacology.

[120]  Sebastiaan Overeem,et al.  Hypocretin (orexin) deficiency in human narcolepsy , 2000, The Lancet.

[121]  M. Low,et al.  The role of the D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice , 2001 .

[122]  A. Beckett,et al.  INFLUENCE OF URINARY PH ON EXCRETION OF AMPHETAMINE. , 1965, Lancet.

[123]  T. Sakurai,et al.  Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system 1 1 Published on the World Wide Web on 27 June 2000. , 2000, Brain Research.

[124]  C. Guilleminault,et al.  Role of central alpha-1 adrenoceptors in canine narcolepsy. , 1988, The Journal of clinical investigation.

[125]  D. Fry,et al.  Randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy , 1998, Annals of neurology.

[126]  O. Hayaishi,et al.  Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[127]  G. Simpson,et al.  Concomitant imipramine and methylphenidate administration: a case report. , 1973, The American journal of psychiatry.