The ocellar component of flight equilibrium control in dragonflies

SummaryThis paper describes the dynamics of light-evoked head reflexes in the dragonflyHemicordulia tau under light conditions which were selected to optimally address the ocelli.1.The responses occur only during flight.2.Stimulation by a light positioned to address the median ocellus evokes a head movement around the pitch axis. The threshold is in the order of 107 photons · cm−2 · s−1. With increasing intensity, the responses become progressively faster but do not increase in amplitude.3.Stimulation by lights positioned to address the lateral ocelli evokes head movements around the roll axis with a similar threshold and similar dynamics as in the pitch responses. The responses are strongest when two sources at either side of the animal are switched in alternation.4.No evidence is found for interactions between the lateral and the median inputs.5.During sustained illumination from the median source, the head is tilted towards it indefinitely, and increasing the intensity causes only a small additional change of head position. Decreasing the intensity causes a large movement of the head away from the source, and then the system readapts rapidly and the head returns to the on-position (high pass filtering). If increment pulses are superimposed on a steady background, the magnitude of their effect is a function of both their duration and amplitude.6.If the median source is modulated by a square wave of a frequency above the high pass cut-off, the amplitudes of the responses are proportional to modulation depths and independent of average intensity over 4 log units.7.At intensities below 1011 photons cm−2s−1, the spectral sensitivity has a maximum in the green, exceeding the UV-sensitivity by a factor of 5; at higher intensities the responses become more sensitive to UV than to green (reverse Purkinje shift). It is suggested that the reverse Purkinje shift is a functional adaptation to optimize the detectability of the contrast between sky and ground both in dim light and in direct sunlight.8.The dynamics of the behavioural responses can be largely accounted for by known properties of the neuronal elements of ocellar systems.

[1]  Saadet Bayramoglut-Ergene Untersuchungen über den Einfluss der Ocellen auf die Fluggeschwindigkeit der Wanderheuschrecke Schistocerca gregaria , 1964, Zeitschrift für vergleichende Physiologie.

[2]  L. Goodman,et al.  The Structure and Function of the Insect Dorsal Ocellus , 1970 .

[3]  Peter J. Simmons,et al.  A LOCUST WIND AND OCELLAR BRAIN NEURONE , 1980 .

[4]  G. Horridge The Compound eye and vision of insects , 1975 .

[5]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[6]  G. D. Bernard,et al.  Insect Pupil Mechanisms. III. On the Pigment Migration in Dragonfly Ocelli , 1979 .

[7]  B. Rosser,et al.  A Study of the Afferent Pathways of the Dragonfly Lateral Ocellus from Extra-Cellularly Recorded Spike Discharges , 1974 .

[8]  W. Stark,et al.  The roles ofDrosophila ocelli and compound eyes in phototaxis , 1980, Journal of comparative physiology.

[9]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[10]  J. Dowling,et al.  Neural Organization of the Median Ocellus of the Dragonfly , 1972, The Journal of general physiology.

[11]  Martin Wilson Generation of graded potential signals in the second order cells of locust ocellus , 1978, Journal of comparative physiology.

[12]  L. Goodman,et al.  Visual interneurons in the bee brain: Synaptic organisation and transmission by graded potentials , 1979, Journal of comparative physiology.

[13]  Norbert Metschl Elektrophysiologische Untersuchungen an den Ocellen von Calliphora , 1963, Zeitschrift für vergleichende Physiologie.

[14]  C. Hess Untersuchungen zur Physiologie der Stirnaugen bei Insekten , 1920, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[15]  W. H. G.,et al.  Tables of Physical and Chemical Constants , 1942, Nature.

[16]  H. Autrum,et al.  Die Arbeitsweise der Ocellen der Insekten , 1963, Zeitschrift für vergleichende Physiologie.

[17]  H. Mittelstaedt,et al.  Physiologie des Gleichgewichtssinnes bei fliegenden Libellen , 1950, Zeitschrift für vergleichende Physiologie.

[18]  L. Goodman,et al.  The Role of Certain Optomotor Reactions in Regulating Stability in the Rolling Plane During Flight in the Desert Locust, Schistocerca Gregaria , 1965 .

[19]  L. Goodman,et al.  Lateral ocellar nerve projections in the dragonfly brain , 1978, Cell and Tissue Research.

[20]  R L Chappell,et al.  Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies , 1975, The Journal of general physiology.

[21]  Steering responses of adult and nymphal crickets to light, with special reference to the head rolling movement. , 1980 .

[22]  Jonathon Howard,et al.  An Ocellar Dorsal Light Response in a Dragonfly , 1979 .

[23]  R. Menzel,et al.  Pigment movement during light and chromatic adaptation in the retinula cells ofFormica polyctena (Hymenoptera, Formicidae) , 1973, Journal of comparative physiology.

[24]  J. L. Eaton Spectral sensitivity of the ocelli of the adult cabbage looper moth,Trichoplusia ni , 2004, Journal of comparative physiology.

[25]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[26]  H. Kondo Efferent system of the lateral ocellus in the dragonfly: Its relationships with the ocellar afferent units, the compound eyes, and the wing sensory system , 1978, Journal of comparative physiology.

[27]  A. Lammert Über Pigmentwanderung im Punktauge der Insecten, sowie über Licht- und Schwerkraftreaktionen von Schmetterlingsraupen , 1925, Zeitschrift für vergleichende Physiologie.

[28]  Martin Wilson,et al.  The functional organisation of locust ocelli , 1978, Journal of comparative physiology.

[29]  Martin Wilson The origin and properties of discrete hyperpolarising potentials in the second order cells of locust ocellus , 1978, Journal of comparative physiology.

[30]  L. Goodman,et al.  Relationships between ocellar units in the ventral nerve cord and ocellar pathways in the brain ofSchistocerca gregaria , 1974, Journal of comparative physiology.

[31]  H. Homann Zum Problem der Ocellenfunktion bei den Insekten , 1924, Zeitschrift für vergleichende Physiologie.