Molecular modelling studies on Henry-Michaelis complexes of a class-C β-lactamase and β-lactam compounds

Abstract Molecular mechanics calculations based on the AMBER force field were used to construct molecular models for the Henry–Michaelis complexes of Enterobacter cloacae P99, a class C β-lactamase, with various β-lactam antibiotics. The results confirm the high significance of the carboxyl group borne by the β-lactam to the binding interaction with the enzyme's active site. The differential conformation adopted by the carboxyl group in penicillins and cephalosporins is clearly reflected in the behaviour of the complexes formed. Thus, penicillins and cephalosporins form a strong hydrogen bond between one of the oxygen atoms in the carboxyl group and the hydroxyl group in the side chain of Thr-316 and Ser-318, respectively. This differential interaction of the carboxyl group in the two types of antibiotic also results in differential interactions of the oxygen atom in the β-lactam carbonyl with the Ser-64 and Ser-318 enzyme residues.

[1]  Sarah L. Price,et al.  On the electrostatic and steric similarity of lactam compounds and the natural substrate for bacterial cell-wall biosynthesis , 1996, J. Comput. Aided Mol. Des..

[2]  J. Frère,et al.  The roles of residues Tyr150, Glu272, and His314 in class C β‐lactamases , 1996 .

[3]  K. Bush,et al.  Classification of beta-lactamases: groups 1, 2a, 2b, and 2b' , 1989, Antimicrobial Agents and Chemotherapy.

[4]  J. Frère,et al.  A comparative study of class-D beta-lactamases. , 1993, The Biochemical journal.

[5]  T. Grundström,et al.  The acyl-enzyme mechanism of beta-lactamase action. The evidence for class C Beta-lactamases. , 1982, The Biochemical journal.

[6]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[7]  E. Billings,et al.  Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Ser130 in class A beta-lactamases. , 1992, Protein engineering.

[8]  J. Frère,et al.  Role of residue Lys315 in the mechanism of action of the Enterobacter cloacae 908R beta-lactamase. , 1994, Biochemistry.

[9]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[10]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[11]  A. Dubus,et al.  The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. , 1994, Biochemistry.

[12]  J. Donoso,et al.  Kinetic and Molecular-Modelling Studies of Reactions of a Class-Aβ-Lactamase with Compounds Bearing a Methoxy Group on theβ-Lactam Ring , 1999 .

[13]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[14]  S. G. Waley,et al.  6 beta-Bromopenicillanic acid inactivates beta-lactamase I. , 1979, The Biochemical journal.

[15]  A. Dubus,et al.  Role of asparagine 152 in catalysis of beta-lactam hydrolysis by Escherichia coli AmpC beta-lactamase studied by site-directed mutagenesis. , 1995, Biochemistry.

[16]  F. Winkler,et al.  Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. , 2001, Nature.

[17]  J. Frère,et al.  Beta‐lactamases and bacterial resistance to antibiotics , 1995, Molecular microbiology.

[18]  J. Frère,et al.  Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. , 1994, The Biochemical journal.

[19]  K. Bush,et al.  Classification of beta-lactamases: groups 2c, 2d, 2e, 3, and 4 , 1989, Antimicrobial Agents and Chemotherapy.

[20]  J. Frère,et al.  An overview of the kinetic parameters of class B beta-lactamases. , 1993, The Biochemical journal.

[21]  T. Sawai,et al.  Amino acid sequence, active-site residue, and effect of suicide inhibitors on cephalosporinase of Citrobacter freundii GN346. , 1988, Reviews of Infectious Diseases.

[22]  R. Pratt,et al.  Effect of the 3'-leaving group on turnover of cephem antibiotics by a class C beta-lactamase. , 1989, The Biochemical journal.

[23]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[24]  Juan Frau,et al.  Ab initio study of the alkaline hydrolysis of a thio-β-lactam structure , 2000 .

[25]  Loosemore Mj,et al.  Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid: kinetics. , 1980 .

[26]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[27]  E. Billings,et al.  Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. , 1994, Biochemistry.

[28]  M. Page,et al.  The Chemistry of β-lactams , 1992 .