Mining for scalar representations of emotions in music databases

This dissertation examines an important issue in the Music Information Retrieval domain: codifying the classification of harmonic pitches for the purpose of discovering action rules to interact with scalar music theory. Our intent is twofold: (1) Codify scalar music theory for the purpose of classification rules mining to build a system for automatic indexing of music by scale, region, genre, and emotion, (2) Use action rules mining to permit developers to manipulate a search's resultant composition's genre and tension while still retaining the bulk of original music score. We propose a categorization system for music based upon classification rules and action rules. Herein is a procedure that draws categorization from temporal and spectral attributes of signals that result in a structure conducive for data mining emotions in music based upon classification rules and action rules.

[1]  Alicja Wieczorkowska,et al.  Categorization of Musical Instrument Sounds Based on Numerical Parameters , 2007 .

[2]  Herbert Aptheker American Negro Slave Revolts , 1963 .

[3]  Edward J. Coyle,et al.  Perceptual Issues in Music Pattern Recognition: Complexity of Rhythm and Key Finding , 2001, Comput. Humanit..

[4]  Piotr Synak,et al.  Application of Temporal Descriptors to Musical Instrument Sound Recognition , 2003, Journal of Intelligent Information Systems.

[5]  Paris Smaragdis,et al.  Blind separation of convolved mixtures in the frequency domain , 1998, Neurocomputing.

[6]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[7]  Ichiro Fujinaga,et al.  Realtime Recognition of Orchestral Instruments , 2000, International Conference on Mathematics and Computing.

[8]  M. Lavy Emotion and the experience of listening to music : a framework for empirical research , 2001 .

[9]  Zbigniew W. Ras,et al.  Rules for Processing and Manipulating Scalar Music Theory , 2007, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07).

[10]  Justin Zobel,et al.  An architecture for effective music information retrieval , 2004, J. Assoc. Inf. Sci. Technol..

[11]  Ella Bingham,et al.  Advances in independent component analysis with applications to data mining , 2003 .

[12]  Parke Godfrey,et al.  Minimization in Cooperative Response to Failing Database Queries , 1994, Int. J. Cooperative Inf. Syst..

[13]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[14]  Takashi X. Fujisawa,et al.  The Psychophysics of Harmony Perception: Harmony is a Three-Tone Phenomenon , 2006 .

[15]  Bozena Kostek,et al.  Musical instrument classification and duet analysis employing music information retrieval techniques , 2004, Proceedings of the IEEE.

[16]  François Pachet,et al.  Knowledge Management and Musical Metadata , 2005 .

[17]  Gerhard Widmer,et al.  Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries , 2003, Artif. Intell..

[18]  Zbigniew W. Ras,et al.  Action-Rules: How to Increase Profit of a Company , 2000, PKDD.

[19]  Piotr Synak,et al.  Creating Reliable Database for Experiments on Extracting Emotions from Music , 2005, Intelligent Information Systems.

[20]  I. Cross Music, Cognition, Culture, and Evolution , 2001, Annals of the New York Academy of Sciences.

[21]  J. Schmidhuber,et al.  A First Look at Music Composition using LSTM Recurrent Neural Networks , 2002 .

[22]  Zbigniew W. Ras,et al.  Knowledge discovery-based identification of musical pitches and instruments in polyphonic sounds , 2007, Eng. Appl. Artif. Intell..

[23]  I. Peretz,et al.  What is specific to music processing? Insights from congenital amusia , 2003, Trends in Cognitive Sciences.

[24]  Zbigniew W. Ras,et al.  MIRAI: Multi-hierarchical, FS-Tree Based Music Information Retrieval System , 2007, RSEISP.

[25]  Xavier Rodet,et al.  Automatically selecting signal descriptors for SoundClassification , 2002, ICMC.

[26]  A. Vink,et al.  Music and Emotion , 2001 .

[27]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[28]  E. Chew Modeling Tonality: Applications to Music Cognition , 2001 .

[29]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[30]  Emanuele Pollastri,et al.  Musical Instrument Timbres Classification with Spectral Features , 2003, EURASIP J. Adv. Signal Process..

[31]  Geoffrey Zweig,et al.  Speech Recognition with Dynamic Bayesian Networks , 1998, AAAI/IAAI.

[32]  G. A. Mendelsohn,et al.  Affect grid : A single-item scale of pleasure and arousal , 1989 .

[33]  Piotr Synak,et al.  Extracting Emotions from Music Data , 2005, ISMIS.

[34]  D. Watson Mood and temperament , 2000 .

[35]  N. Rickard Intense emotional responses to music: a test of the physiological arousal hypothesis , 2004 .

[36]  Tong Zhang Instrument classification in polyphonic music based on timbre analysis , 2001, SPIE ITCom.

[37]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[38]  Zbigniew W. Ras,et al.  Intelligent Query Answering , 2009, Encyclopedia of Data Warehousing and Mining.

[39]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[40]  Anssi Klapuri,et al.  Wide-Band Pitch Estimation for Natural Sound Sources with Inharmonicities , 1999 .

[41]  Zbigniew W. Ras,et al.  Blind Signal Separation of Similar Pitches and Instruments in a Noisy Polyphonic Domain , 2006, ISMIS.

[42]  Tao Li,et al.  Detecting emotion in music , 2003, ISMIR.

[43]  Terry Gaasterland Cooperative Answering through Controlled Query Relaxation , 1997, IEEE Expert.

[44]  Barak A. Pearlmutter,et al.  Independent Component Analysis: Blind source separation by sparse decomposition in a signal dictionary , 2001 .

[45]  Dan Yang,et al.  Disambiguating Music Emotion Using Software Agents , 2004, ISMIR.

[46]  Martin Doerr,et al.  Semantic Problems of Thesaurus Mapping , 2006, J. Digit. Inf..

[47]  François Pachet,et al.  Beyond the cybernetic jam fantasy: the continuator , 2004, IEEE Computer Graphics and Applications.

[48]  Frank Dellaert,et al.  Recognizing emotion in speech , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[49]  J. Sloboda,et al.  Music and emotion: Theory and research , 2001 .

[50]  Fumitaka Ono,et al.  ISO/IEC JTC 1/SC 29 , 2006 .

[51]  M.E. Valentinuzzi,et al.  Human psychophysiological perception of musical scales and nontraditional music , 1999, IEEE Engineering in Medicine and Biology Magazine.

[52]  K. Hevner Experimental studies of the elements of expression in music , 1936 .

[53]  Sylvain Marchand AN EFFICIENT PITCH-TRACKING ALGORITHM USING A COMBINATION OF FOURIER TRANSFORMS , 2001 .

[54]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[55]  Zbigniew W. Ras,et al.  Differentiated harmonic feature analysis on music information retrieval for instrument recognition , 2006, 2006 IEEE International Conference on Granular Computing.

[56]  Russell H. Lambert,et al.  Blind separation of multiple speakers in a multipath environment , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[57]  Barak A. Pearlmutter,et al.  Blind source separation by sparse decomposition , 2000, SPIE Defense + Commercial Sensing.

[58]  Youngmoo E. Kim,et al.  Analysis of a Contour-based Representation for Melody , 2000, ISMIR.

[59]  William Forde Thompson,et al.  Perceptual Judgments of Triads and Dyads: Assessment of a Psychoacoustic Model , 1997 .

[60]  R. G. Crowder,et al.  Perception of the Major/Minor Distinction: IV. Emotional Connotations in Young Children , 1990 .

[61]  Marc Leman Schema-based tone center recognition of musical signals , 1994 .

[62]  Stephen McAdams,et al.  Instrument Sound Description in the Context of MPEG-7 , 2000, ICMC.

[63]  Emilia Gómez,et al.  Using and enhancing the current MPEG-7 standard for a music content processing tool , 2003 .

[64]  Youngmoo E. Kim,et al.  Musical instrument identification: A pattern‐recognition approach , 1998 .

[65]  Anssi Klapuri,et al.  Musical instrument recognition using cepstral coefficients and temporal features , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[66]  John R. Pierce,et al.  The science of musical sound , 1983 .

[67]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[68]  Piotr Synak,et al.  KDD-Based Approach to Musical Instrument Sound Recognition , 2002, ISMIS.

[69]  J. Russell Core affect and the psychological construction of emotion. , 2003, Psychological review.

[70]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[71]  Alicja Wieczorkowska,et al.  Rough Sets as A Tool for Audio Signal Classification , 1999, ISMIS.