Graph-based message-passing schedules for decoding LDPC codes
暂无分享,去创建一个
[1] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[2] Paul H. Siegel,et al. Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..
[3] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[4] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[5] Amir H. Banihashemi,et al. A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).
[6] Amir H. Banihashemi,et al. Decoding low-density parity-check codes with probabilistic schedule , 2001, 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233).
[7] Radford M. Neal,et al. Near Shannon limit performance of low density parity check codes , 1996 .
[8] David J. C. MacKay,et al. Encyclopedia of Sparse Graph Codes , 1999 .
[9] Amir H. Banihashemi,et al. Decoding low-density parity-check codes with probabilistic scheduling , 2001, IEEE Communications Letters.
[10] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[11] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[12] Robert Michael Tanner,et al. A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.