Microelectrode electrochemistry with semiconducting microelectrode chips.

Well-defined semiconducting microelectrodes on silicon chips are prepared for new insights into microelectrode electrochemistry. Unique voltammetric features are observed due to a combined effect of enhanced mass transport from microelectrodes and rectifying nature of the semiconductor-electrolyte interface. The "diffusional independence" of single elements in certain arrays is also carefully studied.

[1]  Xingjiu Huang,et al.  CdSe quantum dots enhance electrical and electrochemical signals of nanogap devices for bioanalysis. , 2012, Small.

[2]  Kathryn E. Toghill,et al.  New electrochemical methods. , 2012, Analytical chemistry.

[3]  Pradyumna S. Singh,et al.  Lithography-based nanoelectrochemistry. , 2011, Analytical chemistry.

[4]  W. Hu,et al.  Electrochemistry in nanoscopic volumes. , 2011, Nanoscale.

[5]  J. Gooding,et al.  Direct electrochemistry of cytochrome c at modified Si(100) electrodes. , 2010, Chemistry.

[6]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[7]  Yongfang Li,et al.  Femtoliter and attoliter electrochemical cells on chips. , 2010, Analytical chemistry.

[8]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[9]  Richard G Compton,et al.  Microelectrode arrays for electrochemistry: approaches to fabrication. , 2009, Small.

[10]  C. Grigoropoulos,et al.  Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels. , 2009, Nano letters.

[11]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[12]  Wolfgang Schuhmann,et al.  Single-cell microelectrochemistry. , 2007, Angewandte Chemie.

[13]  C. Martínez-Huitle Diamond microelectrodes and their applications in biological studies. , 2007, Small.

[14]  Yvonne E. Watson,et al.  Fabrication of nanopore array electrodes by focused ion beam milling. , 2007, Analytical chemistry.

[15]  Langford Rm Focused ion beam nanofabrication: a comparison with conventional processing techniques. , 2006 .

[16]  Trevor J. Davies,et al.  The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory , 2005 .

[17]  Christian Amatore,et al.  When voltammetry reaches nanoseconds. , 2005, Analytical Chemistry.

[18]  Cees Dekker,et al.  Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. , 2005, Nano letters.

[19]  D. Arrigan Nanoelectrodes, nanoelectrode arrays and their applications. , 2004, The Analyst.

[20]  D. Riley,et al.  The influence of doping levels and surface termination on the electrochemistry of polycrystalline diamond , 2004 .

[21]  C. Amatore,et al.  Electrochemistry within a limited number of molecules: delineating the fringe between stochastic and statistical behavior. , 2003, Angewandte Chemie.

[22]  Francisco Zaera,et al.  Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. , 2003, Journal of the American Chemical Society.

[23]  A. Kucernak,et al.  Fabrication of carbon microelectrodes with an effective radius of 1 nm , 2002 .

[24]  Y. Gao,et al.  On the theory of electron transfer reactions at semiconductor electrode'liquid interfaces , 2000 .

[25]  M. Bryce Tetrathiafulvalenes as π‐Electron Donors for Intramolecular Charge‐Transfer Materials , 1999 .

[26]  Klaus Zimmer,et al.  Evaluation of Microelectrode Arrays for Amperometric Detection by Scanning Electrochemical Microscopy , 1998 .

[27]  Gerald J. Meyer,et al.  Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors , 1997 .

[28]  N. Lewis,et al.  Rate Constants for Charge Transfer Across Semiconductor-Liquid Interfaces , 1996, Science.

[29]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[30]  A. Bard,et al.  Scanning electrochemical microscopy. 25. Application to investigation of the kinetics of heterogeneous electron transfer at semiconductor (WSe2 and Si) electrodes , 1994 .

[31]  J. Heinze Ultramicroelectrodes in Electrochemistry , 1993 .

[32]  Carl A. Koval,et al.  Electron transfer at semiconductor electrode-liquid electrolyte interfaces , 1992 .

[33]  H. Gerischer Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach , 1991 .

[34]  K. B. Oldham,et al.  A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes , 1988 .

[35]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[36]  A. Bard,et al.  Semiconductor electrodes. IV. Electrochemical behavior of n- and p-type silicon electrodes in acetonitrile solutions , 1976 .

[37]  A. Bard,et al.  Semiconductor electrodes. II. Electrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions , 1975 .

[38]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[39]  R. Memming,et al.  Potential and Charge Distribution at Semiconductor‐electrolyte Interfaces , 1967 .