Aperiodicity Measure for Infinite Sequences

We introduce the notion of aperiodicity measure for infinite symbolic sequences. Informally speaking, the aperiodicity measure of a sequence is the maximum number (between 0 and 1) such that this sequence differs from each of its non-identical shifts in at least fraction of symbols being this number. We give lower and upper bounds on the aperiodicity measure of a sequence over a fixed alphabet. We compute the aperiodicity measure for the Thue---Morse sequence and its natural generalization the Prouhet sequences, and also prove the aperiodicity measure of the Sturmian sequences to be 0. Finally, we construct an automatic sequence with the aperiodicity measure arbitrarily close to 1.

[1]  András Sárközy,et al.  On finite pseudorandom binary sequences VII: The measures of pseudorandomness , 2002 .

[2]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[3]  Jeffrey Shallit,et al.  Avoiding Approximate Squares , 2007, Developments in Language Theory.

[4]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[5]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[6]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[7]  Patrice Séébold,et al.  On some generalizations of the Thue-Morse morphism , 2003, Theor. Comput. Sci..

[8]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[9]  Jeffrey Shallit,et al.  Sums of Digits, Overlaps, and Palindromes , 2000, Discret. Math. Theor. Comput. Sci..

[10]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[11]  András Sárközy,et al.  A finite pseudorandom binary sequence , 2001 .

[12]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[13]  Andrej Muchnik,et al.  Sequences close to periodic , 2009, ArXiv.

[14]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[15]  Allan Adler,et al.  Magic Cubes and Prouhet Sequences , 1977 .

[16]  Sébastien Ferenczi,et al.  Tiling and Local Rank Properties of the Morse Sequence , 1994, Theor. Comput. Sci..

[17]  Kalle Saari,et al.  On the Frequency of Letters in Morphic Sequences , 2006, CSR.

[18]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[19]  Alexander Shen,et al.  Fixed Point and Aperiodic Tilings , 2008, Developments in Language Theory.

[20]  Jeffrey Shallit,et al.  Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences , 2008, ArXiv.

[21]  Symbolic dynamics , 2008, Scholarpedia.

[22]  András Sárközy,et al.  On the measures of pseudorandomness of binary sequences , 2003, Discret. Math..

[23]  Jeffrey Shallit,et al.  The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.

[24]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .