A spatial filtering specification for the auto-Poisson model

The auto-Poisson model describes georeferenced data consisting of counts exhibiting spatial dependence. Its conventional specification is plagued by being restricted to only situations involving negative spatial autocorrelation, and an intractable normalizing constant. Work summarized here accounts for spatial autocorrelation in the mean response specification by incorporating latent map pattern components. Results are reported for seven empirical datasets available in the literature.