Angle- and spectral-dependent light scattering from plasmonic nanocups.

As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Here we investigate how these factors influence the spectral and angular dependence of light scattered by Au nanocups. A simple dielectric substrate causes the axial, electric dipole mode of the nanocup to deviate substantially from its characteristic cos(2) θ free space scattering profile, while the transverse, magnetic dipole mode remains remarkably insensitive to the presence of the substrate. Nanoscale irregularities of the nanocup rim and the local substrate permittivity have a surprisingly large effect on the spectral- and angle-dependent light-scattering properties of these structures.

[1]  Wei Sun,et al.  Influence of gold nanorod geometry on optical response. , 2010, ACS nano.

[2]  Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation. , 2010, ACS nano.

[3]  A. Hartstein,et al.  Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers , 1980 .

[4]  N. Halas,et al.  Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. , 2008, Nano letters.

[5]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[6]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[7]  M. Cortie,et al.  A plasmon-induced current loop in gold semi-shells , 2007 .

[8]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[9]  Jianfang Wang,et al.  Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. , 2011, ACS nano.

[10]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[11]  Peter Nordlander,et al.  Perforated semishells: far-field directional control and optical frequency magnetic response. , 2010, ACS nano.

[12]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[13]  Sanjay Krishna,et al.  A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .

[14]  Laura M. Lechuga,et al.  Improved Biosensing Capability with Novel Suspended Nanodisks , 2011 .

[15]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[16]  C. Mirkin,et al.  Plasmonic focusing in rod-sheath heteronanostructures. , 2009, ACS nano.

[17]  Yu Zhang,et al.  Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles. , 2011, Nano letters.

[18]  S. Link,et al.  Plasmonic nanorod absorbers as orientation sensors , 2010, Proceedings of the National Academy of Sciences.

[19]  L. Lagae,et al.  Plasmonic modes of metallic semishells in a polymer film. , 2010, ACS nano.

[20]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[21]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[22]  G. Borghs,et al.  Fabrication and Optical Properties of Gold Semishells , 2009 .

[23]  Mikael Käll,et al.  Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates. , 2011, ACS nano.

[24]  David R. Smith,et al.  Gold nanoparticles on polarizable surfaces as Raman scattering antennas. , 2010, ACS nano.

[25]  G. Chumanov,et al.  Poly(Vinyl Pyridine) as a Universal Surface Modifier for Immobilization of Nanoparticles , 2002 .

[26]  Dang Yuan Lei,et al.  Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.

[27]  K. Müllen,et al.  Fluorescence enhancement from individual plasmonic gap resonances. , 2010, ACS nano.

[28]  N. Halas,et al.  Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. , 2007, The Journal of chemical physics.

[29]  A. Polman Plasmonic Solar Cells , 2010 .

[30]  Martin A. Green,et al.  Enhanced emission from Si-based light-emitting diodes using surface plasmons , 2006 .

[31]  Harald Giessen,et al.  Plasmonic oligomers: The role of individual particles in collective behavior , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[32]  Naomi J Halas,et al.  Light-bending nanoparticles. , 2009, Nano letters.

[33]  Ruth Signorell,et al.  Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer. , 2009, ACS nano.

[34]  Peter Nordlander,et al.  Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates† , 2010 .

[35]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[36]  S. Link,et al.  Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. , 2011, ACS nano.

[37]  Naomi J Halas,et al.  Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles , 1977 .

[39]  Daniel Derkacs,et al.  Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices , 2008, NanoScience + Engineering.

[40]  Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[42]  Li Zhang,et al.  Cuprous oxide nanoshells with geometrically tunable optical properties. , 2011, ACS nano.