Angle- and spectral-dependent light scattering from plasmonic nanocups.
暂无分享,去创建一个
Yang Li | Peter Nordlander | Naomi J Halas | Travis Brannan | P. Nordlander | N. Halas | N. King | C. Ayala-Orozco | Ciceron Ayala-Orozco | Nicholas S King | T. Brannan | Yang Li
[1] Wei Sun,et al. Influence of gold nanorod geometry on optical response. , 2010, ACS nano.
[2] Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation. , 2010, ACS nano.
[3] A. Hartstein,et al. Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers , 1980 .
[4] N. Halas,et al. Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. , 2008, Nano letters.
[5] B. Hecht,et al. Principles of nano-optics , 2006 .
[6] S. L. Westcott,et al. Infrared extinction properties of gold nanoshells , 1999 .
[7] M. Cortie,et al. A plasmon-induced current loop in gold semi-shells , 2007 .
[8] M. Moskovits. Surface-enhanced spectroscopy , 1985 .
[9] Jianfang Wang,et al. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. , 2011, ACS nano.
[10] Xiang Zhang,et al. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .
[11] Peter Nordlander,et al. Perforated semishells: far-field directional control and optical frequency magnetic response. , 2010, ACS nano.
[12] Naomi J. Halas,et al. Nanoengineering of optical resonances , 1998 .
[13] Sanjay Krishna,et al. A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .
[14] Laura M. Lechuga,et al. Improved Biosensing Capability with Novel Suspended Nanodisks , 2011 .
[15] Peter Nordlander,et al. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.
[16] C. Mirkin,et al. Plasmonic focusing in rod-sheath heteronanostructures. , 2009, ACS nano.
[17] Yu Zhang,et al. Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles. , 2011, Nano letters.
[18] S. Link,et al. Plasmonic nanorod absorbers as orientation sensors , 2010, Proceedings of the National Academy of Sciences.
[19] L. Lagae,et al. Plasmonic modes of metallic semishells in a polymer film. , 2010, ACS nano.
[20] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[21] Younan Xia,et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.
[22] G. Borghs,et al. Fabrication and Optical Properties of Gold Semishells , 2009 .
[23] Mikael Käll,et al. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates. , 2011, ACS nano.
[24] David R. Smith,et al. Gold nanoparticles on polarizable surfaces as Raman scattering antennas. , 2010, ACS nano.
[25] G. Chumanov,et al. Poly(Vinyl Pyridine) as a Universal Surface Modifier for Immobilization of Nanoparticles , 2002 .
[26] Dang Yuan Lei,et al. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.
[27] K. Müllen,et al. Fluorescence enhancement from individual plasmonic gap resonances. , 2010, ACS nano.
[28] N. Halas,et al. Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. , 2007, The Journal of chemical physics.
[29] A. Polman. Plasmonic Solar Cells , 2010 .
[30] Martin A. Green,et al. Enhanced emission from Si-based light-emitting diodes using surface plasmons , 2006 .
[31] Harald Giessen,et al. Plasmonic oligomers: The role of individual particles in collective behavior , 2011, CLEO: 2011 - Laser Science to Photonic Applications.
[32] Naomi J Halas,et al. Light-bending nanoparticles. , 2009, Nano letters.
[33] Ruth Signorell,et al. Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer. , 2009, ACS nano.
[34] Peter Nordlander,et al. Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates† , 2010 .
[35] Harald Giessen,et al. Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .
[36] S. Link,et al. Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. , 2011, ACS nano.
[37] Naomi J Halas,et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[38] W. Lukosz,et al. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles , 1977 .
[39] Daniel Derkacs,et al. Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices , 2008, NanoScience + Engineering.
[40] Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.
[41] H. Atwater,et al. Plasmonics for improved photovoltaic devices. , 2010, Nature materials.
[42] Li Zhang,et al. Cuprous oxide nanoshells with geometrically tunable optical properties. , 2011, ACS nano.