Challenges of order reduction techniques for problems involving polymorphic uncertainty

Modeling of mechanical systems with uncertainties is extremely challenging and requires a careful analysis of a huge amount of data. Both, probabilistic modeling and nonprobabilistic modeling require either an extremely large ensemble of samples or the introduction of additional dimensions to the problem, thus, resulting also in an enormous computational cost growth. No matter whether the Monte‐Carlo sampling or Smolyak's sparse grids are used, which may theoretically overcome the curse of dimensionality, the system evaluation must be performed at least hundreds of times. This becomes possible only by using reduced order modeling and surrogate modeling. Moreover, special approximation techniques are needed to analyze the input data and to produce a parametric model of the system's uncertainties. In this paper, we describe the main challenges of approximation of uncertain data, order reduction, and surrogate modeling specifically for problems involving polymorphic uncertainty. Thereby some examples are presented to illustrate the challenges and solution methods.

[1]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[2]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[5]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[6]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[7]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[8]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[9]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[10]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[11]  H. Matsui,et al.  Study of a method for reducing drum brake squeal , 1999 .

[12]  M. Jansen Analysis of variance designs for model output , 1999 .

[13]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[14]  R de Boer,et al.  Theory of Porous Media: Highlights in Historical Development and Current State , 2000 .

[15]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  W. Ehlers Foundations of multiphasic and porous materials , 2002 .

[18]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[19]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[20]  A. Keane,et al.  Stochastic Reduced Basis Methods , 2002 .

[21]  G. Falsone,et al.  A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters , 2002 .

[22]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[23]  G. Ostermeyer On the dynamics of the friction coefficient , 2003 .

[24]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[25]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[26]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[27]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[28]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[29]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[30]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[31]  G P Ostermeyer,et al.  New insights into the tribology of brake systems , 2008 .

[32]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[33]  A. Sarkar,et al.  Domain decomposition of stochastic PDEs: Theoretical formulations , 2009 .

[34]  F. Chinesta,et al.  Recent advances on the use of separated representations , 2009 .

[35]  T. Ricken,et al.  Evolutional growth and remodeling in multiphase living tissue , 2009 .

[36]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[37]  Phaedon-Stelios Koutsourelakis,et al.  Accurate Uncertainty Quantification Using Inaccurate Computational Models , 2009, SIAM J. Sci. Comput..

[38]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[39]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[40]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[41]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[42]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[43]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[44]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[45]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[46]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[47]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[48]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[49]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[50]  S. Adhikari A reduced spectral function approach for the stochastic finite element analysis , 2011 .

[51]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[52]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[53]  Hermann G. Matthies,et al.  Uncertainty Quantification in numerical Aerodynamic via low‐rank Response Surface , 2012 .

[54]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[55]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[56]  D. Rixen,et al.  Discrete Empirical Interpolation Method for Finite Element Structural Dynamics , 2013 .

[57]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[58]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[59]  H. Matthies,et al.  Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach , 2013, 1305.6818.

[60]  S. Idelsohn,et al.  Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems , 2014 .

[61]  S. Reese,et al.  Model reduction in elastoplasticity: proper orthogonal decomposition combined with adaptive sub-structuring , 2014 .

[62]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[63]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[64]  Mathilde Chevreuil,et al.  A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.

[65]  A. Wynn,et al.  A method for normal-mode-based model reduction in nonlinear dynamics of slender structures , 2015 .

[66]  W. Wall,et al.  Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme , 2014, Biomechanics and Modeling in Mechanobiology.

[67]  Lars Grasedyck,et al.  Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs , 2015, SIAM/ASA J. Uncertain. Quantification.

[68]  David Amsallem,et al.  Efficient model reduction of parametrized systems by matrix discrete empirical interpolation , 2015, J. Comput. Phys..

[69]  Bruno Sudret,et al.  Global sensitivity analysis using low-rank tensor approximations , 2016, Reliab. Eng. Syst. Saf..

[70]  S. Reese,et al.  POD‐based model reduction with empirical interpolation applied to nonlinear elasticity , 2016 .

[71]  Hermann G. Matthies,et al.  Parameter estimation via conditional expectation: a Bayesian inversion , 2016, Adv. Model. Simul. Eng. Sci..

[72]  Bruno Sudret,et al.  Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions , 2015, J. Comput. Phys..

[73]  P. Steinmann,et al.  Reduced‐order modelling for linear heat conduction with parametrised moving heat sources , 2016 .

[74]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[75]  A. Simone,et al.  POD-DEIM model order reduction for strain softening viscoplasticity , 2017 .

[76]  C. Farhat,et al.  A multilevel projection‐based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics , 2017 .

[77]  Christian Reeps,et al.  Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression , 2017, Biomechanics and modeling in mechanobiology.

[78]  Andreas C. Damianou,et al.  Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  P. Steinmann,et al.  A numerical study of different projection-based model reduction techniques applied to computational homogenisation , 2017, Computational Mechanics.

[80]  T. Ricken,et al.  Polymorphic uncertainty quantification for stability analysis of fluid saturated soil and earth structures , 2017 .

[81]  Stefan Vandewalle,et al.  Computation of the output of a function with fuzzy inputs based on a low-rank tensor approximation , 2017, Fuzzy Sets Syst..

[82]  Francesco Rizzi,et al.  Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations Part B: Accelerated Monte Carlo Sampling with Local PC Expansions , 2018, SIAM J. Sci. Comput..

[83]  S. Marelli,et al.  An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis , 2017, Structural Safety.

[84]  Paul Steinmann,et al.  Two reduction methods for stochastic FEM based homogenization using global basis functions , 2018 .

[85]  Iason Papaioannou,et al.  PLS-based adaptation for efficient PCE representation in high dimensions , 2019, J. Comput. Phys..

[86]  S. Reese,et al.  An Adaptive Way of Choosing Significant Snapshots for Proper Orthogonal Decomposition , 2019, IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018.

[87]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.