On the Direct Sum Conjecture in the Straight Line Model

We prove that if a quadratic system satisfies the direct sum conjecture strongly in the quadratic algorithm model, then it satisfies the direct sum conjecture strongly in the straight line algorithm model. Therefore, if the strong direct sum conjecture is true for the quadratic algorithm model then it is also true for the straight line algorithm model. We use this to classify all the minimal programs that compute the product of two polynomials modulo a squarefree polynomial.

[1]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[2]  Yechezkel Zalcstein,et al.  Algebras Having Linear Multiplicative Complexities , 1977, JACM.

[3]  Shmuel Winograd On Multiplication in Algebraic Extension Fields , 1979, Theor. Comput. Sci..

[4]  Annemarie Fellmann Optimal Algorithms for Finite Dimensional Simply Generated Algebras , 1985, AAECC.

[5]  Amir Averbuch,et al.  Classification of All the Minimal Bilinear Algorithms for Computing the Coefficients of the Product of Two Polynomials Modulo a Polynomial, Part I: The Algeabra G[u] / < Q(u)^l >, l > 1 , 1988, Theor. Comput. Sci..

[6]  Ephraim Feig Certain Systems of Bilinear Forms Whose Minimal Algorithms Are All Quadratic , 1983, J. Algorithms.

[7]  B. M. Fulk MATH , 1992 .

[8]  Hans F. de Groote Characterization of Division Algebras of Minimal Rank and the Structure of Their Algorithm Varieties , 1983, SIAM J. Comput..

[9]  Ephraim Feig,et al.  On the direct sum conjecture , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[11]  Amir Averbuch,et al.  Classification of all the Minimal Bilinear Algorithms for Computing the Coefficients of the Product of Two Polynomials Modulo a Polynomial , 1986, ICALP.

[12]  Ephraim Feig On Systems of Bilinear Forms Whose Minimal Division-Free Algorithms Are All Bilinear , 1981, J. Algorithms.

[13]  Nader H. Bshouty,et al.  On the extended direct sum conjecture , 1989, STOC '89.

[14]  Joseph JáJá,et al.  On the Validity of the Direct Sum Conjecture , 1986, SIAM J. Comput..