A comparison of optimization-based approaches for a model computational aerodynamics design problem

[1]  Robert G. Voigt,et al.  Requirements for Multidisciplinary Design of Aerospace Vehicles on High Performance Computers , 1990 .

[2]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[3]  M. H. Rizk,et al.  Aerodynamic optimization by simultaneously updating flow variables and design parameters , 1988 .

[4]  J. Lorenz Convergence of upwind schemes for a stationary shock , 1986 .

[5]  G. R. Shubin,et al.  Exponentially derived switching schemes for inviscid flow , 1984 .

[6]  A. Majda,et al.  Multiple Steady States for 1-D Transonic Flow , 1984 .

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  Philip E. Gill,et al.  Practical optimization , 1981 .

[9]  G. R. Shubin,et al.  Steady shock tracking and Newton's method applied to one-dimensional duct flow , 1981 .

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[12]  Mel L. Wasserman,et al.  Practical Applications of Optimal-Control Theory to History-Matching Multiphase Simulator Models , 1975 .

[13]  G. Chavent,et al.  History Matching by Use of Optimal Theory , 1975 .

[14]  M. L. Wasserman,et al.  A New Algorithm for Automatic History Matching , 1974 .

[15]  M. Powell,et al.  On the Estimation of Sparse Jacobian Matrices , 1974 .

[16]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[17]  Angelo Miele,et al.  Theory of optimum aerodynamic shapes , 1965 .

[18]  T. Apostol Mathematical Analysis , 1957 .