Optimal Remote Entanglement Distribution

Distributing entanglement between distant nodes is an essential task in quantum networks. To achieve this task, quantum repeaters have been introduced to perform entanglement swapping. This paper offers a design of remote entanglement distribution (RED) protocols that maximize the entanglement distribution rate (EDR). We introduce the concept of enodes, representing the entangled quantum bit (qubit) pairs in the network. This concept enables us to design the optimal RED protocols based on the solutions of some linear programming problems. Moreover, we investigate RED in a homogeneous repeater chain, which is a building block for many quantum networks. In particular, we determine the maximum EDR for homogeneous repeater chains in a closed form. Our results enable the distribution of long-distance entanglement with noisy intermediate-scale quantum (NISQ) technologies and provide insights into the design and implementation of general quantum networks.

[1]  Moe Z. Win,et al.  Remote State Preparation for Multiple Parties , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  F. Schmidt,et al.  Waiting time in quantum repeaters with probabilistic entanglement swapping , 2017, Physical Review A.

[3]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[4]  Jian-Wei Pan,et al.  Fault-tolerant quantum repeater with atomic ensembles and linear optics , 2006, quant-ph/0609151.

[5]  Marco Chiani,et al.  Secure Key Throughput of Intermittent Trusted-Relay QKD Protocols , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[6]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[7]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[8]  Moe Z. Win,et al.  Channel-Adapted Quantum Error Correction for the Amplitude Damping Channel , 2007, IEEE Transactions on Information Theory.

[9]  Iordanis Kerenidis,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[10]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[11]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[12]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[13]  C. Macchiavello,et al.  Multipartite entanglement in quantum algorithms , 2010, 1007.4179.

[14]  Moe Z. Win,et al.  Optimum quantum error recovery using semidefinite programming , 2007 .

[15]  Marcello Caleffi,et al.  Optimal Routing for Quantum Networks , 2017, IEEE Access.

[16]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[17]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[18]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[19]  Moe Z. Win,et al.  Quantum Queuing Delay , 2020, IEEE Journal on Selected Areas in Communications.

[20]  Moe Z. Win,et al.  Structured near-optimal channel-adapted quantum error correction , 2007, 0708.3658.

[21]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[22]  C. Simon,et al.  Rate-loss analysis of an efficient quantum repeater architecture , 2014, 1404.7183.

[23]  S. Barnett,et al.  Optimal sequential measurements for bipartite state discrimination , 2017, 1704.01409.

[24]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[25]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[26]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[27]  Laszlo Gyongyosi,et al.  Decentralized Base-Graph Routing for the Quantum Internet , 2018, Physical Review A.

[28]  Chiara Macchiavello,et al.  Usefulness of entanglement-assisted quantum metrology , 2016, 1603.03993.

[29]  Andrea Conti,et al.  Quantum Pulse Position Modulation with Photon-Added Coherent States , 2019, 2019 IEEE Globecom Workshops (GC Wkshps).

[30]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[31]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[32]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[33]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[34]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[35]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[36]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[37]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[39]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[40]  G. Guo,et al.  Semihierarchical quantum repeaters based on moderate lifetime quantum memories , 2017, 1701.05718.

[41]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[42]  V. Malinovsky,et al.  Entanglement swapping of two arbitrarily degraded entangled states , 2015, 1512.06093.

[43]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[44]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[45]  Lajos Hanzo,et al.  Quantum-Aided Multi-Objective Routing Optimization Using Back-Tracing-Aided Dynamic Programming , 2018, IEEE Transactions on Vehicular Technology.

[46]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[47]  S. Pirandola Capacities of repeater-assisted quantum communications , 2016, 1601.00966.

[48]  David Elkouss,et al.  Linear programs for entanglement and key distribution in the quantum internet , 2018, Communications Physics.

[49]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[50]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[51]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[52]  M. Win,et al.  Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels , 2017, Physical Review A.